Câu hỏi:
24/08/2024 351
Cho một lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng lục giác đều có diện tích \(6\sqrt 3 \) cm2, hãy tính độ dài cạnh của hình vuông đã cho.
Cho một lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng lục giác đều có diện tích \(6\sqrt 3 \) cm2, hãy tính độ dài cạnh của hình vuông đã cho.
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 9 có đáp án !!
Quảng cáo
Trả lời:
Lục giác đều là hợp của 6 tam giác đều cạnh a, mỗi tam giác có chiều cao \(h = \frac{{\sqrt 3 }}{2}a.\)
Vì diện tích của lục giác đều là \(6\sqrt 3 \) cm2 nên ta có:
\(6\sqrt 3 = 6.\frac{{ah}}{2} = 6.\frac{{a.\frac{{\sqrt 3 }}{2}a}}{2} = \frac{{3\sqrt 3 }}{2}{a^2},\) hay a = 2 (cm).
Đường tròn ngoại tiếp lục giác đều này có bán kính: R = a = 2 (cm).
Do bán kính đường tròn này bằng một nửa đường chéo của hình vuông, nên hình vuông có độ dài đường chéo bằng 1 cm.
Gọi b là độ dài cạnh của hình vuông.
Theo định lí Pythagore, ta có: b2 + b2 = 12 = 1, hay \(b = \frac{{\sqrt 2 }}{2}\) (cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do hai tam giác AEH và AFH vuông tại E và F nên IE = IA = IH = IF.
Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).
b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = 90^\circ \) nên tứ giác BCEF nội tiếp đường tròn (M, MB).
Suy ra \[\widehat {AEF} = 180^\circ - \widehat {{\rm{CEF}}} = \widehat {FBC} = \widehat {ABC}.\]
Vì ∆IFA cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = 90^\circ - \widehat {ABC}.\) (1)
Mặt khác, ta có MF = MC, hay ∆MFC cân tại M. Suy ra \(\widehat {MFC} = \widehat {MCF}.\) (2)
Vì vậy ta có:
\(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} = \widehat {MCF} + \left( {90^\circ - \widehat {IFA}} \right) = \left( {90^\circ - \widehat {ABC}} \right) + \widehat {ABC} - 90^\circ \) (theo (1) và (2)).
Do đó MF ⊥ IF. Suy ra MF tiếp xúc với (I, IA). Tương tự MR tiếp xúc với (I, IA).
Lời giải
Hình vuông cạnh 3 cm có đường chéo bằng: \(\sqrt {{3^2} + {3^2}} = 3\sqrt 2 \) (cm).
Đường tròn ngoại tiếp hình vuông này có bán kính: \(R = \frac{{3\sqrt 2 }}{2}\) (cm).
Vậy lục giác đều có cạnh: \(a = R = \frac{{3\sqrt 2 }}{2}\) (cm).
Chu vi của lục giác đều là: \(\mathcal{C} = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 \) (cm).
Lục giác đều là hợp của 6 tam giác đều cạnh a, chiều cao \(h = \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{2}.\frac{{3\sqrt 2 }}{2} = \frac{{3\sqrt 6 }}{4}\,\,(cm)\) nên có diện tích là:
\(S = 6.\frac{{ah}}{2} = 6.\frac{{\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 6 }}{4}}}{2} = \frac{{27\sqrt 3 }}{4}\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.