Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}.\)
Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}.\)
Quảng cáo
Trả lời:

Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó
\(\widehat {BAH} = \widehat {BAD} = 90^\circ - \widehat {ABD} = 90^\circ - \widehat {ABC}.\) (1)
Mặt khác, vì ∆AOC cân tại O nên:
\(\widehat {OAC} = \widehat {OCA} = \frac{{180^\circ - \widehat {AOC}}}{2} = 90^\circ - \frac{{\widehat {AOC}}}{2} = 90^\circ - \widehat {ABC}.\) (2)
Từ (1) và (2) suy ra \(\widehat {BAH} = \widehat {OAC}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì các tam giác EIA và FIA lần lượt vuông tại đỉnh E và F nên \(\widehat {EIA} + \widehat {IAE} = 90^\circ \) và \(\widehat {FIA} + \widehat {AIF} = 90^\circ .\)
Ta có: \(\widehat {EIF} + \widehat {BAC} = \widehat {EIA} + \widehat {AIF} + \widehat {IAE} + \widehat {FAI}\)
\[ = \left( {\widehat {EIA} + \widehat {IAE}} \right) + \left( {\widehat {FAI} + \widehat {AIF}} \right)\]\( = 90^\circ + 90^\circ = 180^\circ .\)
Lời giải
Gọi R là bán kinh đường tròn ngoại tiếp tam giác ABC.
Ta có \(R = \frac{{\sqrt 3 }}{3}BC,\) hay \(BC = \sqrt 3 R = 3\sqrt 3 \) (cm).
Gọi M là trung điểm của BC.
Ta có \(AM = \frac{{\sqrt 3 }}{2}BC = \frac{9}{2}\) cm.
Vậy \({S_{ABC}} = \frac{1}{2}AM.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3 = \frac{{27\sqrt 3 }}{4}\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Trâm Đoàn Thị
Đt