Chọn phương án đúng.
Cho tam giác đều ABC nội tiếp (O; R) và ngoại tiếp (I; r). Khẳng định nào dưới đây là sai?
A. Điểm O trùng với điểm I.
B. Điểm I là trực tâm tam giác ABC,
C. R = 2r.
D. r bằng một nửa cạnh tam giác ABC.
Chọn phương án đúng.
Cho tam giác đều ABC nội tiếp (O; R) và ngoại tiếp (I; r). Khẳng định nào dưới đây là sai?
A. Điểm O trùng với điểm I.
B. Điểm I là trực tâm tam giác ABC,
C. R = 2r.
D. r bằng một nửa cạnh tam giác ABC.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét tam giác đều ABC, có tâm đường tròn ngoại tiếp I là trọng tâm của tam giác ABC.
Tâm nội tiếp của tam giác đều ABC là trọng tâm của tam giác ABC.
Suy ra điểm O trùng với điểm I.
Vì tam giác ABC là tam giác đều nên điểm I vừa là trọng tâm vừa là trực tâm của tam giác ABC.
Điểm I là trực tâm của tam giác ABC suy ra \(AI = \frac{2}{3}AH\) hay AI = 2IH.
Do đó R = 2r.
Vậy khẳng định D là khẳng định sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó
\(\widehat {BAH} = \widehat {BAD} = 90^\circ - \widehat {ABD} = 90^\circ - \widehat {ABC}.\) (1)
Mặt khác, vì ∆AOC cân tại O nên:
\(\widehat {OAC} = \widehat {OCA} = \frac{{180^\circ - \widehat {AOC}}}{2} = 90^\circ - \frac{{\widehat {AOC}}}{2} = 90^\circ - \widehat {ABC}.\) (2)
Từ (1) và (2) suy ra \(\widehat {BAH} = \widehat {OAC}.\)
Lời giải
Gọi R là bán kinh đường tròn ngoại tiếp tam giác ABC.
Ta có \(R = \frac{{\sqrt 3 }}{3}BC,\) hay \(BC = \sqrt 3 R = 3\sqrt 3 \) (cm).
Gọi M là trung điểm của BC.
Ta có \(AM = \frac{{\sqrt 3 }}{2}BC = \frac{9}{2}\) cm.
Vậy \({S_{ABC}} = \frac{1}{2}AM.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3 = \frac{{27\sqrt 3 }}{4}\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.