Câu hỏi:
15/09/2024 186
Chọn phương án đúng.
Cho tam giác vuông MNP như Hình 4.14. Tìm khẳng định sai trong các khẳng định sau?
A. \(MN = \frac{5}{2}.\)
B. \(MN = \frac{{5\sqrt 3 }}{3}.\)
C. \(MN = 5\sqrt 3 .\)
D. \(MN = \frac{{5\sqrt 3 }}{2}.\)
Chọn phương án đúng.
Cho tam giác vuông MNP như Hình 4.14. Tìm khẳng định sai trong các khẳng định sau?

A. \(MN = \frac{5}{2}.\)
B. \(MN = \frac{{5\sqrt 3 }}{3}.\)
C. \(MN = 5\sqrt 3 .\)
D. \(MN = \frac{{5\sqrt 3 }}{2}.\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét tam giác MNP vuông tại N, ta có: \(\widehat P = 60^\circ \) suy ra \(\widehat M = 90^\circ - \widehat P = 90^\circ - 60^\circ = 30^\circ .\)
• \(MN = MP.\cos M = MP.\sin P\).
Suy ra \(MN = 17.\sin 60^\circ = \frac{{17\sqrt 3 }}{2};\)
• \(NP = MN.\tan M = MN.\cot P\).
Suy ra \(NP = MN.\cot 60^\circ = \frac{{17\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{3} = \frac{{17}}{2} = 8,5\) hay \(NP = MN.\tan 30^\circ .\)
Vậy khẳng định C là khẳng định sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)

Theo định lí Pythagore, ta có \({c^2} = {21^2} - {18^2} = 117\) suy ra \(c = \sqrt {117} = 3\sqrt {13} \approx 11.\)
Ta có \(\sin B = \frac{{AC}}{{BC}} = \frac{{18}}{{21}} = \frac{6}{7}\) nên dùng MTCT ta có \(\widehat B \approx 59^\circ .\)
Do đó \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 59^\circ \approx 31^\circ .\)
b)

Ta có \(\widehat B = 90^\circ - \widehat C = 90^\circ - 30^\circ = 0^\circ ,\) \[\cos C = \cos 30^\circ = \frac{{AC}}{{BC}} = \frac{b}{a} = \frac{{\sqrt 3 }}{2}\] nên
\(a = \frac{{2b}}{{\sqrt 3 }} = \frac{{2.10}}{{\sqrt 3 }} = \frac{{20\sqrt 3 }}{3} \approx 11,\) \(c = b.\tan C = 10.\tan 30^\circ = \frac{{10\sqrt 3 }}{3} \approx 6.\)
c)

Ta có a2 = b2 + c2 = 32 + 52 = 34 nên \(a = \sqrt {34} \approx 6,\)
\(\tan B = \frac{b}{c} = \frac{3}{5},\) dùng MTCT tính được \(\widehat B \approx 31^\circ .\)
Do đó \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 31^\circ \approx 59^\circ .\)
Lời giải
(H.4.21b)
Gọi điểm mắt người nhìn là A, ngọn cây là O, gốc cây là H, giao điểm của đường thẳng qua A song song với mặt đất là B. Ta cần tính đoạn OH.

Ta có AB = 20 m và tam giác ABO vuông tại B.
Trong tam giác vuông ABO có
\(OB = AB.\tan A = 20.\tan 36^\circ \approx 14,5\) (m).
Ta có OH = OB + BH = 14,5 + 1,7 = 16,2 (m).
Vậy cây cao 16,2 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.