Câu hỏi:

15/09/2024 589

Một người đứng tại điểm A, cách gương phẳng đặt nằm trên mặt đất tại điểm B là 1,2 m, nhìn thấy hình phản chiếu qua gương B của ngọn cây (cây mọc thẳng đứng, có gốc ở tại điểm C cách B là 4,8 m, B nằm giữa A và C). Biết khoảng cách từ mặt đất đến mắt người đó là 1,65 m. Tính chiều cao của cây (H.4.19a).

Một người đứng tại điểm A, cách gương phẳng đặt nằm trên mặt đất tại điểm B là 1,2 m, nhìn thấy hình phản chiếu qua gương B của ngọn cây (cây mọc thẳng đứng, có gốc ở tại điểm C cách B là 4,8 m, B nằm giữa A và C). Biết khoảng cách từ mặt đất đến mắt người đó là 1,65 m. Tính chiều cao của cây (H.4.19a).   (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A' là điểm tại mặt người đứng, C' là đỉnh ngọn cây (H.4.19b) thì theo quang học, ta có \(\widehat {ABA'} = \widehat {CBC'}.\)

Một người đứng tại điểm A, cách gương phẳng đặt nằm trên mặt đất tại điểm B là 1,2 m, nhìn thấy hình phản chiếu qua gương B của ngọn cây (cây mọc thẳng đứng, có gốc ở tại điểm C cách B là 4,8 m, B nằm giữa A và C). Biết khoảng cách từ mặt đất đến mắt người đó là 1,65 m. Tính chiều cao của cây (H.4.19a).   (ảnh 2)

Trong tam giác ABA', ta có \(\tan \widehat {ABA'} = \frac{{AA'}}{{AB}} = \frac{{1,65}}{{1,2}} = \frac{{11}}{8}.\)

Trong tam giác CBC', ta có \(\tan \widehat {CBC'} = \frac{{CC'}}{{BC}}.\)

\(\widehat {ABA'} = \widehat {CBC'}\) nên \(\tan \widehat {ABA'} = \tan \widehat {CBC'}\) hay \(\frac{{CC'}}{{BC}} = \frac{{11}}{8},\)

suy ra \(CC' = \frac{{11.4,8}}{8} = \frac{{33}}{5} = 6,6\) (m).

Vậy chiều cao của cây là 6,6 m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải tam giác ABC vuông tại A có BC = a, AC = b, AB = c, trong các trường hợp (góc làm tròn đến độ, cạnh làm tròn đến chữ số hàng đơn vị):

a) a = 21, b = 18;

b) b = 10, \(\widehat C = 30^\circ ;\)

c) c = 5, b = 3.

Xem đáp án » 15/09/2024 6,805

Câu 2:

Một người đứng cách gốc cây 20 m nhìn thấy ngọn cây với góc 36° so với phương nằm ngang. Biết mắt người ấy cách mặt đất 1,7 m và cây mọc thẳng đứng (H.4.21a). Tính chiều cao của cây (làm tròn đến chữ số thập phân thứ nhất).

Một người đứng cách gốc cây 20 m nhìn thấy ngọn cây với góc 36° so với phương nằm ngang. Biết mắt người ấy cách mặt đất 1,7 m và cây mọc thẳng đứng (H.4.21a). Tính chiều cao của cây (làm tròn đến chữ số thập phân thứ nhất).   (ảnh 1)

Xem đáp án » 15/09/2024 1,938

Câu 3:

Để đo chiều rộng của một khúc sông, có hai người đã làm như sau: Hai người đứng ở hai vị trí A, B trên hai bờ sông, nhìn thấy đỉnh một tòa tháp phía xa dưới góc 40° và góc 55° (H.4.20). Biết tòa tháp cao 300 m, từ đó tính được khoảng cách AB. Em hãy cho biết, họ tính AB bằng bao nhiêu mét.

Để đo chiều rộng của một khúc sông, có hai người đã làm như sau: Hai người đứng ở hai vị trí A, B trên hai bờ sông, nhìn thấy đỉnh một tòa tháp phía xa dưới góc 40° và góc 55° (H.4.20). Biết tòa tháp cao 300 m, từ đó tính được khoảng cách AB. Em hãy cho biết, họ tính AB bằng bao nhiêu mét.   (ảnh 1)

Xem đáp án » 15/09/2024 1,254

Câu 4:

Tìm góc nghiêng α và chiều rộng AB của mái nhà kho trong Hình 4.16 (góc làm tròn đến độ, độ dài làm tròn đến dm).

Tìm góc nghiêng α và chiều rộng AB của mái nhà kho trong Hình 4.16 (góc làm tròn đến độ, độ dài làm tròn đến dm). (ảnh 1)

Xem đáp án » 15/09/2024 1,253

Câu 5:

Cho hình thang ABCD (AD // BC) có AD = 16 cm, BC = 4 cm và \(\widehat A = \widehat B = \widehat {ACD} = 90^\circ .\)

a) Kẻ đường cao CE của tam giác ACD. Chứng minh \(\widehat {ADC} = \widehat {ACE}.\) Tính sin của các góc \(\widehat {ADC},\) \(\widehat {ACE}\) và suy ra AC2 = AD.AE. Từ đó tính AC.

b) Tính góc D của hình thang.

Xem đáp án » 15/09/2024 1,043

Câu 6:

Cho tam giác ABC vuông tại A, BC = 10, AB = 6.

a) Giải tam giác ABC.

b) Từ B kẻ đường thẳng vuông góc với BC, cắt AC tại D. Tính BD, CD, AD và góc \(\widehat {ABD}.\) (Góc làm tròn đến độ, cạnh làm tròn đến chữ số thập phân thứ nhất).

Xem đáp án » 15/09/2024 802

Câu 7:

Tính các góc của hình thoi có hai đường chéo dài \(2\sqrt 3 \) và 2.

Xem đáp án » 15/09/2024 649