Câu hỏi:
09/09/2024 232Xét biểu thức \(A = \left( {\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{x - 4}}.\)
a) Tìm tất cả các giá trị của biến x để tính giá trị của biểu thức.
b) Chứng minh rằng với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho có giá trị không đổi.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Nếu x < 0 thì không được tính \(\sqrt x ,\) nếu x = 4 thì phép chia cho x – 4 không thực hiện được và không tính được giá trị của biểu thức đã cho.
Nếu x không âm và khác 4 thì \(x - 2\sqrt x + 4 = {\left( {\sqrt x - 1} \right)^2} + 3 > 0\) nên tất cả các phép toán có mặt trong biểu thức đã cho đều thực hiện được.
Vậy tập hợp các giá trị của biến x để tính được giá trị của biểu thức là {x ∈ ℝ | x ≥ 0, x ≠ 4}.
b) Với x không âm và khác 4 thì
\[x\sqrt x + 8 = {\left( {\sqrt x } \right)^3} + {2^3} = \left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)\] ;
\[\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} = \frac{{\left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)}}{{x - 2\sqrt x + 4}} = \sqrt x + 2.\]
Do đó \(A = \left( {\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{x - 4}}\)
\( = \left( {\sqrt x + 2 - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \left( {2 - \sqrt x } \right).\frac{1}{{\sqrt x - 2}} = - 1.\)
Vậy với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho nhận giá trị không đổi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đưa thừa số vào trong dấu căn:
a) \(4\sqrt 3 ;\)
b) \( - 2\sqrt 7 ;\)
c) \(4\sqrt {\frac{{15}}{2}} ;\)
d) \( - 5\sqrt {\frac{{16}}{5}} .\)
Câu 2:
Rút gọn biểu thức \[A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\] (x ≥ 0, x ≠ 9).
Câu 3:
Đưa thừa số ra ngoài dấu căn:
a) \(\sqrt {52} ;\)
b) \(\sqrt {27a} \) (a ≥ 0);
c) \(\sqrt {50\sqrt 2 + 100} ;\)
d) \(\sqrt {9\sqrt 5 - 18} .\)
Câu 4:
Rút gọn các biểu thức sau:
a) \[2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} ;\]
b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }};\)
c) \[\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}.\]
Câu 5:
Trục căn thức ở mẫu:
a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }};\)
b) \(\frac{1}{{\sqrt 5 - 2}};\)
c) \(\frac{{3 + \sqrt 3 }}{{1 - \sqrt 3 }};\)
d) \(\frac{{\sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}.\)
Câu 6:
Khử mẫu trong dấu căn:
a) \(2a.\sqrt {\frac{3}{5}} ;\)
b) \( - 3x.\sqrt {\frac{5}{x}} \) (x > 0);
c) \[ - \sqrt {\frac{{3a}}{b}} \] (a ≥ 0, b > 0).
Câu 7:
Rút gọn biểu thức:
a) \(\left( {\frac{{7 - \sqrt 7 }}{{1 - \sqrt 7 }} + \sqrt 3 } \right)\left( {\frac{{7 + \sqrt 7 }}{{1 + \sqrt 7 }} + \sqrt 3 } \right);\)
b) \(\frac{{28}}{3}.\sqrt {\frac{{27}}{{16}}} - 3.\sqrt {\frac{{49}}{3}} - \frac{9}{4}.\sqrt {\frac{{48}}{{243}}} .\)
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!