Câu hỏi:

09/09/2024 232

Xét biểu thức \(A = \left( {\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{x - 4}}.\)

a) Tìm tất cả các giá trị của biến x để tính giá trị của biểu thức.

b) Chứng minh rằng với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho có giá trị không đổi.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Nếu x < 0 thì không được tính \(\sqrt x ,\) nếu x = 4 thì phép chia cho x – 4 không thực hiện được và không tính được giá trị của biểu thức đã cho.

Nếu x không âm và khác 4 thì \(x - 2\sqrt x + 4 = {\left( {\sqrt x - 1} \right)^2} + 3 > 0\) nên tất cả các phép toán có mặt trong biểu thức đã cho đều thực hiện được.

Vậy tập hợp các giá trị của biến x để tính được giá trị của biểu thức là {x ℝ | x ≥ 0, x ≠ 4}.

b) Với x không âm và khác 4 thì

\[x\sqrt x + 8 = {\left( {\sqrt x } \right)^3} + {2^3} = \left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)\] ;

\[\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} = \frac{{\left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)}}{{x - 2\sqrt x + 4}} = \sqrt x + 2.\]

Do đó \(A = \left( {\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{x - 4}}\)

\( = \left( {\sqrt x + 2 - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)

\( = \left( {2 - \sqrt x } \right).\frac{1}{{\sqrt x - 2}} = - 1.\)

Vậy với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho nhận giá trị không đổi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đưa thừa số vào trong dấu căn:

a) \(4\sqrt 3 ;\)

b) \( - 2\sqrt 7 ;\)

c) \(4\sqrt {\frac{{15}}{2}} ;\)

d) \( - 5\sqrt {\frac{{16}}{5}} .\)

Xem đáp án » 09/09/2024 3,625

Câu 2:

Rút gọn biểu thức \[A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\] (x ≥ 0, x ≠ 9).

Xem đáp án » 09/09/2024 2,932

Câu 3:

Đưa thừa số ra ngoài dấu căn:

a) \(\sqrt {52} ;\)

b) \(\sqrt {27a} \) (a ≥ 0);

c) \(\sqrt {50\sqrt 2 + 100} ;\)

d) \(\sqrt {9\sqrt 5 - 18} .\)

Xem đáp án » 09/09/2024 2,764

Câu 4:

Rút gọn các biểu thức sau:

a) \[2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} ;\]

b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }};\)

c) \[\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}.\]

Xem đáp án » 09/09/2024 2,286

Câu 5:

Trục căn thức ở mẫu:

a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }};\)

b) \(\frac{1}{{\sqrt 5 - 2}};\)

c) \(\frac{{3 + \sqrt 3 }}{{1 - \sqrt 3 }};\)

d) \(\frac{{\sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}.\)

Xem đáp án » 09/09/2024 891

Câu 6:

Khử mẫu trong dấu căn:

a) \(2a.\sqrt {\frac{3}{5}} ;\)

b) \( - 3x.\sqrt {\frac{5}{x}} \) (x > 0);

c) \[ - \sqrt {\frac{{3a}}{b}} \] (a ≥ 0, b > 0).

Xem đáp án » 09/09/2024 692

Câu 7:

Rút gọn biểu thức:

a) \(\left( {\frac{{7 - \sqrt 7 }}{{1 - \sqrt 7 }} + \sqrt 3 } \right)\left( {\frac{{7 + \sqrt 7 }}{{1 + \sqrt 7 }} + \sqrt 3 } \right);\)

b) \(\frac{{28}}{3}.\sqrt {\frac{{27}}{{16}}} - 3.\sqrt {\frac{{49}}{3}} - \frac{9}{4}.\sqrt {\frac{{48}}{{243}}} .\)

Xem đáp án » 09/09/2024 441

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store