Câu hỏi:

09/09/2024 293

Xét biểu thức \(A = \left( {\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{x - 4}}.\)

a) Tìm tất cả các giá trị của biến x để tính giá trị của biểu thức.

b) Chứng minh rằng với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho có giá trị không đổi.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Nếu x < 0 thì không được tính \(\sqrt x ,\) nếu x = 4 thì phép chia cho x – 4 không thực hiện được và không tính được giá trị của biểu thức đã cho.

Nếu x không âm và khác 4 thì \(x - 2\sqrt x + 4 = {\left( {\sqrt x - 1} \right)^2} + 3 > 0\) nên tất cả các phép toán có mặt trong biểu thức đã cho đều thực hiện được.

Vậy tập hợp các giá trị của biến x để tính được giá trị của biểu thức là {x ℝ | x ≥ 0, x ≠ 4}.

b) Với x không âm và khác 4 thì

\[x\sqrt x + 8 = {\left( {\sqrt x } \right)^3} + {2^3} = \left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)\] ;

\[\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} = \frac{{\left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)}}{{x - 2\sqrt x + 4}} = \sqrt x + 2.\]

Do đó \(A = \left( {\frac{{x\sqrt x + 8}}{{x - 2\sqrt x + 4}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{x - 4}}\)

\( = \left( {\sqrt x + 2 - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)

\( = \left( {2 - \sqrt x } \right).\frac{1}{{\sqrt x - 2}} = - 1.\)

Vậy với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho nhận giá trị không đổi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức \[A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\] (x ≥ 0, x ≠ 9).

Xem đáp án » 09/09/2024 4,396

Câu 2:

Đưa thừa số vào trong dấu căn:

a) \(4\sqrt 3 ;\)

b) \( - 2\sqrt 7 ;\)

c) \(4\sqrt {\frac{{15}}{2}} ;\)

d) \( - 5\sqrt {\frac{{16}}{5}} .\)

Xem đáp án » 09/09/2024 3,857

Câu 3:

Rút gọn các biểu thức sau:

a) \[2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} ;\]

b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }};\)

c) \[\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}.\]

Xem đáp án » 09/09/2024 3,469

Câu 4:

Đưa thừa số ra ngoài dấu căn:

a) \(\sqrt {52} ;\)

b) \(\sqrt {27a} \) (a ≥ 0);

c) \(\sqrt {50\sqrt 2 + 100} ;\)

d) \(\sqrt {9\sqrt 5 - 18} .\)

Xem đáp án » 09/09/2024 2,974

Câu 5:

Trục căn thức ở mẫu:

a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }};\)

b) \(\frac{1}{{\sqrt 5 - 2}};\)

c) \(\frac{{3 + \sqrt 3 }}{{1 - \sqrt 3 }};\)

d) \(\frac{{\sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}.\)

Xem đáp án » 09/09/2024 1,017

Câu 6:

Khử mẫu trong dấu căn:

a) \(2a.\sqrt {\frac{3}{5}} ;\)

b) \( - 3x.\sqrt {\frac{5}{x}} \) (x > 0);

c) \[ - \sqrt {\frac{{3a}}{b}} \] (a ≥ 0, b > 0).

Xem đáp án » 09/09/2024 729

Câu 7:

Rút gọn biểu thức:

a) \(\left( {\frac{{7 - \sqrt 7 }}{{1 - \sqrt 7 }} + \sqrt 3 } \right)\left( {\frac{{7 + \sqrt 7 }}{{1 + \sqrt 7 }} + \sqrt 3 } \right);\)

b) \(\frac{{28}}{3}.\sqrt {\frac{{27}}{{16}}} - 3.\sqrt {\frac{{49}}{3}} - \frac{9}{4}.\sqrt {\frac{{48}}{{243}}} .\)

Xem đáp án » 09/09/2024 612

Bình luận


Bình luận