Câu hỏi:

27/06/2024 976

Sự tăng trưởng của một loại vi khuẩn được tính theo công thức \(S = A \cdot {e^{{\rm{r}}\,{\rm{t }}}}\), trong đó \(A\) là số lượng vi khuẩn ban đầu, \({\rm{r}}\) là tỉ lệ tăng trưởng, \({\rm{t}}\) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 500 con và tốc độ tăng trưởng là \(15\% \) trong 1 giờ. Hỏi cần ít nhất bao nhiêu thời gian để số lượng vi khuẩn sẽ tăng lên đến \[1\,\,000\,\,000\] (một triệu con)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng công thức ta có:

\(S = A.{e^{rt}} \Rightarrow t = \frac{1}{r}\ln \frac{S}{A} = \frac{1}{{0,15}}\ln \frac{{1\,\,000\,\,000}}{{500}} \approx 51\) giờ. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \(\sin x = \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + 2k\pi }\\{x = \frac{{5\pi }}{6} + 2k\pi }\end{array}(k \in \mathbb{Z})} \right.\).

Vì \(x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) nên \(x = \frac{\pi }{6} \Rightarrow S = \frac{\pi }{6}\). Chọn D.

Câu 2

Lời giải

Phía bắc khu vực Mỹ La-tinh tiếp giáp với Hoa Kỳ. Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP