Cho hàm số \({\rm{f}}\left( {\rm{x}} \right)\) có \[{\rm{f'}}\left( {\rm{x}} \right) = {\rm{x}}{\left( {{\rm{x}} - 3} \right)^2}{\left( {{\rm{x}} - 2} \right)^3},\,\,\forall {\rm{x}} \in \mathbb{R}\]. Hàm số đã cho có bao nhiêu điểm cực tiểu?
Cho hàm số \({\rm{f}}\left( {\rm{x}} \right)\) có \[{\rm{f'}}\left( {\rm{x}} \right) = {\rm{x}}{\left( {{\rm{x}} - 3} \right)^2}{\left( {{\rm{x}} - 2} \right)^3},\,\,\forall {\rm{x}} \in \mathbb{R}\]. Hàm số đã cho có bao nhiêu điểm cực tiểu?
Quảng cáo
Trả lời:
Ta có \({\rm{f'}}\left( {\rm{x}} \right) = 0 \Leftrightarrow {\rm{x}} = 0\,,\,\,{\rm{x}} = 3\,,\,\,{\rm{x}} = 2\). Trong đó: \({\rm{x}} = 3\) là nghiệm bội chẵn.
Khi đó ta có bảng xét dấu:
Dựa vào bảng xét dấu, ta thấy hàm số đã cho có một điểm cực tiểu.
Đáp án: 1.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sin x = \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + 2k\pi }\\{x = \frac{{5\pi }}{6} + 2k\pi }\end{array}(k \in \mathbb{Z})} \right.\).
Vì \(x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) nên \(x = \frac{\pi }{6} \Rightarrow S = \frac{\pi }{6}\). Chọn D.
Lời giải
Phía bắc khu vực Mỹ La-tinh tiếp giáp với Hoa Kỳ. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.