Biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {3x + 1} - 1}}{x} = \frac{a}{b}\), trong đó \(a,\,\,I = \int f (x)dx = \int {{{\tan }^5}} xdx = \int {\frac{{{{\sin }^5}x}}{{{{\cos }^5}x}}dx} \) là các số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Giá trị biểu thức \(P = {a^2} + {b^2}\) bằng
Biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {3x + 1} - 1}}{x} = \frac{a}{b}\), trong đó \(a,\,\,I = \int f (x)dx = \int {{{\tan }^5}} xdx = \int {\frac{{{{\sin }^5}x}}{{{{\cos }^5}x}}dx} \) là các số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Giá trị biểu thức \(P = {a^2} + {b^2}\) bằng
Quảng cáo
Trả lời:
Ta có: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {3x + 1} - 1}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{3x + 1 - 1}}{{x\left( {\sqrt {3x + 1} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{3}{{\sqrt {3x + 1} + 1}} = \frac{3}{2}\).
Do đó, \(a = 3,\,\,b = 2\). Vậy \(P = {a^2} + {b^2} = 13.\)
Đáp án: 13.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sin x = \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + 2k\pi }\\{x = \frac{{5\pi }}{6} + 2k\pi }\end{array}(k \in \mathbb{Z})} \right.\).
Vì \(x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) nên \(x = \frac{\pi }{6} \Rightarrow S = \frac{\pi }{6}\). Chọn D.
Lời giải
Phía bắc khu vực Mỹ La-tinh tiếp giáp với Hoa Kỳ. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.