Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đồ thị là đường cong trong hình vẽ bên. Tìm số nghiệm của phương trình \({\rm{f}}\left( {{x^4} - 1} \right) - 1 = 0\).
Quảng cáo
Trả lời:
Đặt \(t = {x^4} - 1 \Rightarrow f\left( t \right) = 1\,\,(*) \Leftrightarrow t = a\,,\,\,t = b\,,\,\,t = c\,\,\left( {a < - 1 < b < 1 < c} \right)\).
Khi đó \({x^4} - 1 = a \Leftrightarrow {x^4} = 1 + a < 0\) vô nghiệm;
\({x^4} - 1 = b \Leftrightarrow {x^4} = b + 1 \Leftrightarrow x = \pm \sqrt[4]{{b + 1}}\)
\({x^4} - 1 = c \Leftrightarrow {x^4} = c + 1 \Leftrightarrow x = \pm \sqrt[4]{{c + 1}}.\)
Đáp án: 4.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sin x = \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + 2k\pi }\\{x = \frac{{5\pi }}{6} + 2k\pi }\end{array}(k \in \mathbb{Z})} \right.\).
Vì \(x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) nên \(x = \frac{\pi }{6} \Rightarrow S = \frac{\pi }{6}\). Chọn D.
Lời giải
Phía bắc khu vực Mỹ La-tinh tiếp giáp với Hoa Kỳ. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.