Câu hỏi:

13/07/2024 308

Chứng minh rằng phương trình

x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

x2 – 2 ∙ 3 ∙ x + 9 + y2 – 2 ∙ 1 ∙ y + 1 + z2 – 2 ∙ 2 ∙ z + 4 = 9 + 1 + 4 + 11

(x – 3)2 + (y – 1)2 + (z – 2)2 = 25.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = = 5.

Cách 2:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

x2 + y2 + z2 – 2 ∙ 3 ∙ x – 2 ∙ 1 ∙ y – 2 ∙ 2 ∙ z – 11 = 0

Khi đó a2 + b2 + c2 – d = 32 + 12 + 22 – (– 11) = 25 > 0.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = = 5.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian (Hình 42). Ta có thể mô phỏng cơ chế hoạt động của hệ thống GPS trong không gian như sau: Trong cùng một thời điểm, toạ độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh cho trước, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy, điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.

Ta xét một ví dụ cụ thể như sau:

Trong không gian với hệ tọa độ Oxyz, cho bốn vệ tinh A(3; – 1; 6), B(1; 4; 8), C(7; 9; 6), D(7; – 15; 18). Tìm tọa độ của điểm M trong không gian biết khoảng cách từ các vệ tinh đến điểm M lần lượt là MA = 6, MB = 7, MC = 12, MD = 24.

Xem đáp án » 13/07/2024 15,436

Câu 2:

Trong Ví dụ 6, giả sử người đi biển di chuyển theo đường thẳng từ vị trí I(21; 35; 50) đến vị trí D(5 121; 658; 0). Tìm vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng.

Xem đáp án » 13/07/2024 1,764

Câu 3:

Cho phương trình x2 + y2 + z2 – 4x – 2y – 10z + 2 = 0.

Chứng minh rằng phương trình trên là phương trình của một mặt cầu. Xác định tâm và bán kính của mặt cầu đó.

Xem đáp án » 13/07/2024 775

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho điểm I(1; 2; 3) và mặt cầu tâm I đi qua điểm A(0; 4; 5). Tính đường kính của mặt cầu đó.

Xem đáp án » 13/07/2024 536

Câu 5:

Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:
(S) có đường kính là đoạn thẳng CD với C(1; – 3; – 1) và D(– 3; 1; 2).

Xem đáp án » 13/07/2024 267

Câu 6:

Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:
(S) có tâm I(3; – 7; 1) và bán kính R = 2;

Xem đáp án » 13/07/2024 259