Chứng minh rằng phương trình
x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.
Chứng minh rằng phương trình
x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.
Quảng cáo
Trả lời:
Cách 1:
Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0
⇔ x2 – 2 ∙ 3 ∙ x + 9 + y2 – 2 ∙ 1 ∙ y + 1 + z2 – 2 ∙ 2 ∙ z + 4 = 9 + 1 + 4 + 11
⇔ (x – 3)2 + (y – 1)2 + (z – 2)2 = 25.
Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R =
= 5.
Cách 2:
Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0
⇔ x2 + y2 + z2 – 2 ∙ 3 ∙ x – 2 ∙ 1 ∙ y – 2 ∙ 2 ∙ z – 11 = 0
Khi đó a2 + b2 + c2 – d = 32 + 12 + 22 – (– 11) = 25 > 0.
Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R =
= 5.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi tọa độ điểm M là M(x; y; z).
Ta có MA =
;
MB =
;
MC =
= 12;
MD =
.
Từ đó ta có hệ phương trình
.
Lấy (3) – (1) ta được: (7 – x)2 – (3 – x)2 + (9 – y)2 – (– 1 – y)2 = 144 – 36
⇔ – 8x – 20y = – 12 ⇔ 2x + 5y = 3 ⇔ x =
(5).
Lấy (4) – (3) ta được: (– 15 – y)2 – (9 – y)2 + (18 – z)2 – (6 – z)2 = 576 – 144
⇔ 48y – 24z = 0 ⇔ 2y – z = 0 ⇔ z = 2y (6).
Thay (5) và (6) vào (2) ta được:
+ (4 – y)2 + (8 – 2y)2 = 49
⇔ 45y2 – 170y + 125 = 0 ⇔ y = 1 hoặc y =
.
+ Với y = 1 thì x = – 1, z = 2. Khi đó M(– 1; 1; 2).
Thử lại bằng cách thay x = – 1, y = 1, z = 2 vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.
+ Với y =
thì x =
, z =
. Khi đó M
.
Thử lại bằng cách thay x =
, y =
, z =
vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.
Vậy M(– 1; 1; 2) là điểm cần tìm.
Lời giải
Đường thẳng ID đi qua điểm I và nhận
làm vectơ chỉ phương.
Phương trình tham số của đường thẳng ID là
(t là tham số).
Giả sử H là vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển có thể nhìn thấy ánh sáng từ ngọn hải đăng. Khi đó IH = R.
Ta có H ∈ ID nên gọi tọa độ điểm H(21 + 5 100t; 35 + 623t; 50 – 50t).
.
IH = R ![]()
⇔ t ≈ ± 0,78.
+ Với t ≈ 0,78, ta có H(3 999; 520,94; 11),
= (3 978; 485,94; – 39).
Khi đó
nên hai vectơ
cùng hướng, vậy thỏa mãn H thuộc đoạn thẳng ID.
+ Với t ≈ – 0,78, ta có H(– 3 957; – 450,94; 89),
= (– 3 978; – 485,94; 39).
Khi đó
nên hai vectơ
ngược hướng, vậy H không thuộc đoạn thẳng ID.
Vậy vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm H(3 999; 520,94; 11).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
