Câu hỏi:

13/07/2024 39,856 Lưu

Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian (Hình 42). Ta có thể mô phỏng cơ chế hoạt động của hệ thống GPS trong không gian như sau: Trong cùng một thời điểm, toạ độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh cho trước, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy, điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.

Ta xét một ví dụ cụ thể như sau:

Trong không gian với hệ tọa độ Oxyz, cho bốn vệ tinh A(3; – 1; 6), B(1; 4; 8), C(7; 9; 6), D(7; – 15; 18). Tìm tọa độ của điểm M trong không gian biết khoảng cách từ các vệ tinh đến điểm M lần lượt là MA = 6, MB = 7, MC = 12, MD = 24.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi tọa độ điểm M là M(x; y; z).

Ta có MA = ;

MB = ;

MC = = 12; 

MD = .

Từ đó ta có hệ phương trình .

Lấy (3) – (1) ta được: (7 – x)2 – (3 – x)2 + (9 – y)2 – (– 1 – y)2 = 144 – 36

– 8x – 20y = – 12 2x + 5y = 3 x = (5).

Lấy (4) – (3) ta được: (– 15 – y)2 – (9 – y)2 + (18 – z)2 – (6 – z)2 = 576 – 144

48y – 24z = 0 2y – z = 0 z = 2y (6).

Thay (5) và (6) vào (2) ta được: + (4 – y)2 + (8 – 2y)2 = 49

45y2 – 170y + 125 = 0 y = 1 hoặc y = .

+ Với y = 1 thì x = – 1, z = 2. Khi đó M(– 1; 1; 2).

Thử lại bằng cách thay x = – 1, y = 1, z = 2 vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.

+ Với y = thì x = , z = . Khi đó M.

Thử lại bằng cách thay x = , y = , z = vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.

Vậy M(– 1; 1; 2) là điểm cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng ID đi qua điểm I và nhận làm vectơ chỉ phương.

Phương trình tham số của đường thẳng ID là (t là tham số).

Giả sử H là vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển có thể nhìn thấy ánh sáng từ ngọn hải đăng. Khi đó IH = R.

Ta có H ID nên gọi tọa độ điểm H(21 + 5 100t; 35 + 623t; 50 – 50t).

.

IH = R

t ≈ ± 0,78.

+ Với t ≈ 0,78, ta có H(3 999; 520,94; 11), = (3 978; 485,94; – 39).

Khi đó nên hai vectơ cùng hướng, vậy thỏa mãn H thuộc đoạn thẳng ID.

+ Với t ≈ – 0,78, ta có H(– 3 957; – 450,94; 89), = (– 3 978; – 485,94; 39).

Khi đó nên hai vectơ ngược hướng, vậy H không thuộc đoạn thẳng ID.

Vậy vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm H(3 999; 520,94; 11).

Lời giải

Ta có x2 + y2 + z2 – 4x – 2y – 10z + 2 = 0

x2 – 2 ∙ 2 ∙ x + 4 + y2 – 2y + 1 + z2 – 2 ∙ 5 ∙ z + 25 = 4 + 1 + 25 – 2

(x – 2)2 + (y – 1)2 + (z – 5)2 = 28.

Vậy phương trình đã cho là phương trình mặt cầu tâm I(2; 1; 5) và bán kính .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP