Câu hỏi:
12/07/2024 9,695Bác Lan có 500 triệu đồng để đầu tư vào hai khoản: trái phiếu và gửi tiết kiệm ngân hàng với kì hạn 12 tháng. Lãi suất của trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 7%/năm và 6%/năm. Tính số tiền mà bác Lan đầu tư vào mỗi khoản để mỗi năm nhận được tiền lãi là 32 triệu đồng từ hai khoản đầu tư đó.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x (triệu đồng), y (triệu đồng) lần lượt là số tiền mà bác Lan đầu tư vào trái phiếu và gửi tiết kiệm ngân hàng với x > 0, y > 0.
Theo bài, tổng số tiền bác Lan đầu tư hai khoản là 500 triệu đồng nên ta có phương trình:
x + y = 500. (1)
Do lãi suất của trái phiếu là 7%/năm nên số tiền lãi bác Lan nhận được khi đầu tư trái phiếu là: x.7% = 0,07x (triệu đồng).
Do lãi suất của gửi tiết kiệm ngân hàng là 6%/năm nên số tiền lãi bác Lan nhận được khi gửi tiết kiệm ngân hàng là: y.6% = 0,06y (triệu đồng).
Theo bài, mỗi năm bác Lan nhận được tiền lãi là 32 triệu đồng từ hai khoản đầu tư đó nên ta có phương trình:
0,07x + 0,06y = 32. (2)
Từ (1) và (2) ta có hệ phương trình:
Từ phương trình (1), ta có x = 500 ‒ y. (3)
Thế vào phương trình (2) ta được: 0,07.(500 ‒ y) + 0,06y = 32. (4)
Giải phương trình (4):
0,07.(500 ‒ y) + 0,06y = 32
35 ‒ 0,07y + 0,06y = 32
‒0,01y = ‒3
y = 300.
Thay y = 300 vào phương trình (3) ta có:
x = 500 ‒ 300 = 200.
Ta thấy x = 200 và y = 300 thỏa mãn điều kiện nên hệ phương trình đã cho có nghiệm duy nhất (x; y) = (200; 300).
Vậy số tiền mà bác Lan đầu tư vào trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 200 triệu đồng và 300 triệu đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm các hệ số x, y để cân bằng phương trình phản ứng hoá học:
xFeO + O2 → yFe2O3.
Câu 2:
Một ô tô dự định đi từ địa điểm A đến địa điểm B trong một khoảng thời gian nhất định. Nếu ô tô đi với tốc độ 40 km/h thì ô tô đến địa điểm B chậm hơn 90 phút so với dự định. Nếu ô tô đi với tốc độ 60 km/h thì ô tô đến địa điểm B nhanh hơn 30 phút so với dự định. Tính quãng đường AB và thời gian ô tô dự định đi.
Câu 3:
Một nhà máy sản xuất hai loại xi măng: loại I và loại II. Cứ sản xuất mỗi tấn xi măng loại I thì nhà máy thải ra 0,5 kg CO2 (carbon dioxide) và 0,3 kg SO3 (sulfur trioxide), sản xuất mỗi tấn xi măng loại II thì nhà máy thải ra 0,8 kg CO2 và 0,45 kg SO3. Trung bình mỗi ngày, nhà máy nhận được thông số lượng khí thải CO2 và SO3 lần lượt là 1 700 kg và 975 kg. Tính khối lượng xi măng loại I và loại II trung bình mỗi ngày nhà máy sản xuất được.
Câu 4:
Hai đội công nhân cùng đào đất để đắp đê ngăn triều cường. Nếu hai đội cùng làm thì 2 ngày hoàn thành công việc. Nếu đội thứ nhất làm trong 4 ngày rồi nghỉ, đội thứ hai làm tiếp trong 1 ngày nữa thì hoàn thành công việc. Tính thời gian mỗi đội làm riêng để hoàn thành công việc.
Câu 5:
Tìm hai số, biết rằng bốn lần số thứ nhất cộng với ba lần số thứ hai bằng 6 120 và ba lần số thứ nhất hơn hai lần số thứ hai là 1 615.
Câu 6:
Một cửa sổ có dạng hình chữ nhật được xây trên bức tường có dạng hình thang vuông với các kích thước như Hình 4. Tìm x, y biết rằng diện tích của bức tường không tính phần làm cửa sổ là 69 m2 và 2x = y ‒ 3.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!