Câu hỏi:

23/07/2024 321 Lưu

Cho biểu đồ:

Tốc độ tăng trưởng một số mặt hàng xuất khẩu của Việt Nam Căn cứ vào biểu đồ đã cho, hãy cho biết nhận xét nào sau đây là không đúng về tốc độ tăng trưởng một số mặt hàng xuất khẩu của Việt Nam?  	A. Hàng dệt, may có tốc độ tăng trưởng nhanh thứ 2 trong giai đoạn 2012-2014.  	B. Nếu tính trong giai đoạn 2000-2010 thì hàng dệt, may đạt tốc độ tăng trưởng cao nhất.  	C. Hàng điện tử luôn có tốc độ tăng trưởng cao nhất trong giai đoạn 2000-2014.  	D. Hàng thủy sản có tốc độ tăng chậm hơn so với hai mặt hàng còn lại.  (ảnh 1)

Tốc độ tăng trưởng một số mặt hàng xuất khẩu của Việt Nam

Căn cứ vào biểu đồ đã cho, hãy cho biết nhận xét nào sau đây là không đúng về tốc độ tăng trưởng một số mặt hàng xuất khẩu của Việt Nam?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phân tích nội dung các đáp án, ta thấy:

- A đúng: hàng dệt -may có tốc độ tăng trưởng lớn thứ 2 (từ 100% lên 1062%)

- B đúng: giai đoạn 2000-2010 hàng dệt-may có tốc độ tăng trưởng cao nhất (từ 100% lên 593%)

- C không đúng: giai đoạn 2000-2005 hàng điện tử có tốc độ tăng trưởng thấp nhất và năm 2010 tốc độ tăng trưởng đứng thứ 2 → nhận xét tốc độ tăng trưởng hàng điện tử luôn cao nhất trong suốt giai đoạn 2000-2014 là SAI. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(F\left( x \right) = \int f \left( x \right){\rm{d}}x = \left\{ {\begin{array}{*{20}{l}}{{x^2} + 2x + {C_1}}&{{\rm{ khi }}x \ge 1}\\{{x^3} + x + {C_2}}&{{\rm{ khi }}x < 1}\end{array}} \right.\).

Theo bài ra, ta có \(F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\).

Hàm số \(F\left( x \right)\) liên tục nên \(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right)\)

\[ \Leftrightarrow 3 + {C_1} = 4 \Leftrightarrow {C_1} = 1 \Rightarrow F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{x^2} + 2x + 1{\rm{ khi }}x \ge 1}\\{{x^3} + x + 2{\rm{ }}\,\,{\rm{khi }}x < 1}\end{array}} \right.\].

Vậy \(F\left( { - 1} \right) + 2F\left( 2 \right) = {\left( { - 1} \right)^3} + \left( { - 1} \right) + 2 + 2 \cdot \left( {{2^2} + 2 \cdot 2 + 1} \right) = 18.\)

Đáp án: 18.

Câu 2

Lời giải

Media VietJack

Giả sử cạnh của hình lập phương là \(a > 0.\)

Gọi \(N\) là trung điểm đoạn thẳng \(BB'.\)

Khi đó, \(MN\,{\rm{//}}\,BC'\) nên \(\left( {\widehat {AM\,;\,\,BC'}} \right) = (\widehat {AM\,;\,MN}).\)

Xét \(\Delta A'B'M\) vuông tại \(B'\), ta có

\(A'M = \sqrt {A'{{B'}^{\prime 2}} + B'{M^2}}  = \sqrt {{a^2} + \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 5 }}{2}.\)

Xét \(\Delta AA'M\) vuông tại \(A'\), ta có \(AM = \sqrt {A{{A'}^2} + A'{M^2}}  = \sqrt {{a^2} + \frac{{5{a^2}}}{4}}  = \frac{{3a}}{2}.\)

Có \[AN = A'M = \frac{{a\sqrt 5 }}{2}\,;\,\,MN = \frac{{BC'}}{2} = \frac{{a\sqrt 2 }}{2}.\]

Trong tam giác \[AMN\] ta có

\(\cos \widehat {AMN} = \frac{{M{A^2} + M{N^2} - A{N^2}}}{{2MA \cdot MN}} = \frac{{\frac{{9{a^2}}}{4} + \frac{{2{a^2}}}{4} - \frac{{5{a^2}}}{4}}}{{2 \cdot \frac{{3a}}{2} \cdot \frac{{a\sqrt 2 }}{2}}} = \frac{{6{a^2}}}{4} \cdot \frac{4}{{6{a^2}\sqrt 2 }} = \frac{1}{{\sqrt 2 }}.\)

Suy ra \(\widehat {AMN} = 45^\circ .\) Vậy \[\left( {AM,\,\,BC'} \right) = \left( {AM,\,\,MN} \right) = \widehat {AMN} = 45^\circ .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP