Câu hỏi:
23/07/2024 119Một con lắc đơn dao động với biên độ \({\alpha _0} < \frac{\pi }{2}\), có mốc thế năng được chọn tại vị trí cân bằng của vật nặng. Gọi độ lớn vận tốc của vật nặng khi động năng bằng thế năng là v1, khi độ lớn của lực căng dây treo bằng trọng lực tác động lên vật là v2. Tỉ số \(\frac{{{v_1}}}{{{v_2}}}\) có giá trị nào sau đây?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Khi động năng bằng thế năng: \[{W_t} = {W_d} \Rightarrow {W_t} = W - {W_t}\]
\[ \Leftrightarrow mg\ell .\left( {1 - \cos {\alpha _1}} \right) = mg\ell .\left( {1 - \cos {\alpha _0}} \right) - mg\ell .\left( {1 - \cos {\alpha _1}} \right)\]
\[ \Leftrightarrow 1 - \cos {\alpha _1} = \cos {\alpha _1} - \cos {\alpha _0}\]
\[ \Leftrightarrow \cos {\alpha _1} = \frac{1}{2} + \frac{1}{2}.\cos {\alpha _0}\]
+ Khi độ lớn của lực căng dây treo bằng trọng lực tác dụng lên vật:
\[mg.\left( {3\cos {\alpha _2} - 2\cos {\alpha _0}} \right) = mg\]\[ \Leftrightarrow 3\cos {\alpha _2} - 2\cos {\alpha _0} = 1 \Leftrightarrow \cos {\alpha _2} = \frac{1}{3} + \frac{2}{3}.\cos {\alpha _0}\]
+ Khi đó: \[\frac{{{v_1}}}{{{v_2}}} = \frac{{\sqrt {2g\ell \left( {\cos {\alpha _1} - \cos {\alpha _0}} \right)} }}{{\sqrt {2g\ell \left( {\cos {\alpha _2} - \cos {\alpha _0}} \right)} }} = \sqrt {\frac{{\cos {\alpha _1} - \cos {\alpha _0}}}{{\cos {\alpha _2} - \cos {\alpha _0}}}} \]
\[ = \sqrt {\frac{{\frac{1}{2} + \frac{1}{2}.\cos {\alpha _0} - \cos {\alpha _0}}}{{\frac{1}{3} + \frac{2}{3}.\cos {\alpha _0} - \cos {\alpha _0}}}} = \sqrt {\frac{{\frac{1}{2}\left( {1 - \cos {\alpha _0}} \right)}}{{\frac{1}{3}\left( {1 - \cos {\alpha _0}} \right)}}} = \sqrt {\frac{3}{2}} \]. Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{2{\rm{x}} + 2{\rm{ khi x}} \ge 1}\\{3{{\rm{x}}^2} + 1{\rm{ khi }}x < 1}\end{array}} \right..\) Giả sử \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thoả mãn \(F\left( 0 \right) = 2.\) Giá trị của \(F\left( { - 1} \right) + 2F\left( 2 \right)\) bằng
Câu 2:
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là
Câu 3:
Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là
Câu 5:
Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng
Câu 6:
Cho các tập hợp khác rỗng \(A = \left[ {2m\,;\,\,m + 3} \right]\) và \(B = \left( { - \infty \,;\,\, - 2} \right] \cup \left( {4\,;\,\, + \infty } \right).\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(A \cap B \ne \emptyset \)?
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!