Câu hỏi:
23/07/2024 54Một nhà vật lý hạt nhân làm thí nghiệm xác định chu kì bán rã \(\left( T \right)\) của một chất phóng xạ bằng cách dùng máy đếm xung để đo tỉ lệ giữa số hạt bị phân rã \(\left( {\Delta N} \right)\) và số hạt ban đầu \(\left( {{N_0}} \right)\). Dựa vào kết quả thực nghiệm đo được trên hình vẽ, hãy tính \(T\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \({\left( {1 - \frac{{\Delta N}}{{{N_0}}}} \right)^{ - 1}} = \frac{1}{{1 - \frac{{\Delta N}}{{{N_0}}}}} = \frac{1}{{1 - \left( {1 - {2^{ - \frac{t}{T}}}} \right)}} = \frac{1}{{{2^{ - \frac{t}{T}}}}} = {2^{\frac{t}{T}}}\)\( \Rightarrow \ln {\left( {1 - \frac{{\Delta N}}{{{N_0}}}} \right)^{ - 1}} = \ln \left( {{2^{\frac{t}{T}}}} \right)\)
Từ đồ thị ta thấy: \(\left\{ {\begin{array}{*{20}{l}}{t = 6ngay}\\{\ln {{\left( {1 - \frac{{\Delta N}}{{{N_0}}}} \right)}^{ - 1}} = 0,467}\end{array}} \right. \Rightarrow \ln \left( {{2^{\frac{6}{T}}}} \right) = 0,467 \Rightarrow T = 8,9\) ngày. Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là
Câu 2:
Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là
Câu 3:
Cho các tập hợp khác rỗng \(A = \left[ {2m\,;\,\,m + 3} \right]\) và \(B = \left( { - \infty \,;\,\, - 2} \right] \cup \left( {4\,;\,\, + \infty } \right).\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(A \cap B \ne \emptyset \)?
Câu 5:
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{2{\rm{x}} + 2{\rm{ khi x}} \ge 1}\\{3{{\rm{x}}^2} + 1{\rm{ khi }}x < 1}\end{array}} \right..\) Giả sử \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thoả mãn \(F\left( 0 \right) = 2.\) Giá trị của \(F\left( { - 1} \right) + 2F\left( 2 \right)\) bằng
Câu 6:
Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng
Câu 7:
về câu hỏi!