Câu hỏi:

23/07/2024 212 Lưu

Để tìm hiểu về quá trình hô hấp ở thực vật, một bạn học sinh đã làm thí nghiệm theo đúng quy trình với 50 g hạt đậu đang nảy mầm, nước vôi trong và các dụng cụ thí nghiệm đầy đủ. Nhận định nào sau đây đúng? 

A. Thí nghiệm này chỉ thành công khi tiến hành trong điều kiện không có ánh sáng. 
B. Nếu thay hạt đang nảy mầm bằng hạt khô thì kết quả thí nghiệm vẫn không thay đổi. 
C. Nếu thay nước vôi trong bằng dung dịch xút thì kết quả thí nghiệm cũng giống như sử dụng nước vôi trong. 
D. Nước vôi trong bị vẩn đục là do hình thành CaCO3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A. Sai. Thí nghiệm sử dụng hạt nảy mầm (chưa có khả năng quang hợp) nên vẫn có thể thành công trong điều kiện có ánh sáng.

B. Sai. Cường độ hô hấp ở hạt khô thấp, hạt nảy mầm có cường độ hô hấp cao nên thí nghiệm với hạt khô thì kết quả thí nghiệm sẽ thay đổi.

C. Sai. Dung dịch xút (NaOH) không tạo kết tủa với CO2.

D. Đúng. Quá trình hô hấp của thực vật thải ra CO2, CO2 tạo kết tủa với Ca(OH)2 làm nước vôi trong bị vẩn đục.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(F\left( x \right) = \int f \left( x \right){\rm{d}}x = \left\{ {\begin{array}{*{20}{l}}{{x^2} + 2x + {C_1}}&{{\rm{ khi }}x \ge 1}\\{{x^3} + x + {C_2}}&{{\rm{ khi }}x < 1}\end{array}} \right.\).

Theo bài ra, ta có \(F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\).

Hàm số \(F\left( x \right)\) liên tục nên \(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right)\)

\[ \Leftrightarrow 3 + {C_1} = 4 \Leftrightarrow {C_1} = 1 \Rightarrow F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{x^2} + 2x + 1{\rm{ khi }}x \ge 1}\\{{x^3} + x + 2{\rm{ }}\,\,{\rm{khi }}x < 1}\end{array}} \right.\].

Vậy \(F\left( { - 1} \right) + 2F\left( 2 \right) = {\left( { - 1} \right)^3} + \left( { - 1} \right) + 2 + 2 \cdot \left( {{2^2} + 2 \cdot 2 + 1} \right) = 18.\)

Đáp án: 18.

Câu 2

A. \(45^\circ .\)            
B. \(90^\circ .\)            
C. \(30^\circ .\)     
D. \(60^\circ .\)

Lời giải

Media VietJack

Giả sử cạnh của hình lập phương là \(a > 0.\)

Gọi \(N\) là trung điểm đoạn thẳng \(BB'.\)

Khi đó, \(MN\,{\rm{//}}\,BC'\) nên \(\left( {\widehat {AM\,;\,\,BC'}} \right) = (\widehat {AM\,;\,MN}).\)

Xét \(\Delta A'B'M\) vuông tại \(B'\), ta có

\(A'M = \sqrt {A'{{B'}^{\prime 2}} + B'{M^2}}  = \sqrt {{a^2} + \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 5 }}{2}.\)

Xét \(\Delta AA'M\) vuông tại \(A'\), ta có \(AM = \sqrt {A{{A'}^2} + A'{M^2}}  = \sqrt {{a^2} + \frac{{5{a^2}}}{4}}  = \frac{{3a}}{2}.\)

Có \[AN = A'M = \frac{{a\sqrt 5 }}{2}\,;\,\,MN = \frac{{BC'}}{2} = \frac{{a\sqrt 2 }}{2}.\]

Trong tam giác \[AMN\] ta có

\(\cos \widehat {AMN} = \frac{{M{A^2} + M{N^2} - A{N^2}}}{{2MA \cdot MN}} = \frac{{\frac{{9{a^2}}}{4} + \frac{{2{a^2}}}{4} - \frac{{5{a^2}}}{4}}}{{2 \cdot \frac{{3a}}{2} \cdot \frac{{a\sqrt 2 }}{2}}} = \frac{{6{a^2}}}{4} \cdot \frac{4}{{6{a^2}\sqrt 2 }} = \frac{1}{{\sqrt 2 }}.\)

Suy ra \(\widehat {AMN} = 45^\circ .\) Vậy \[\left( {AM,\,\,BC'} \right) = \left( {AM,\,\,MN} \right) = \widehat {AMN} = 45^\circ .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. cellulose.
B. tinh bột. 
C. glucose.
D. saccharose

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. hiện đại hóa cao thông tin, liên lạc. 
B. phát triển mạnh hàng không-vũ trụ. 
C. phân bố công nghiệp về phía nam. 
D. mở rộng ngành dịch vụ viễn thông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP