Câu hỏi:

24/07/2024 759 Lưu

Xét 4 tế bào sinh tinh ở cơ thể có kiểu gen \[{\rm{Aa}}\frac{{{\rm{BD}}}}{{{\rm{bd}}}}\] giảm phân tạo giao tử. Cho biết các gen liên kết hoàn toàn, trong quá trình giảm phân chỉ có 1 tế bào có cặp NST mang 2 cặp gen B, b và D, d không phân li trong giảm phân I, phân li bình thường trong giảm phân II; cặp NST mang cặp gen A, a phân li bình thường. Kết thúc quá trình giảm phân đã tạo ra 6 loại giao tử, trong đó có 37,5% loại giao tử mang 2 alen trội. Theo lí thuyết, loại giao tử mang 1 alen trội chiếm tỉ lệ là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kiểu gen \[\frac{{B{\rm{D}}}}{{b{\rm{d}}}}\] giảm phân không phân li ở giảm phân I, giảm phân II bình thường sẽ tạo giao tử (\[\frac{{B{\rm{D}}}}{{b{\rm{d}}}}\]) và giao tử (O). Vậy tế bào sinh tinh giảm phân bị rối loạn sẽ tạo giao tử:

(A, a)(\[\frac{{B{\rm{D}}}}{{b{\rm{d}}}}\], O) = 2 A\[\frac{{B{\rm{D}}}}{{b{\rm{d}}}}\] và 2 a hoặc 2 A và 2 a\[\frac{{B{\rm{D}}}}{{b{\rm{d}}}}\].

Tế bào sinh tinh bình thường tạo giao tử (A, a)(BD, bd) = 2 ABD2 abd (kiểu 1) hoặc 2 Abd2 aBD (kiểu 2).

Mà 4 tế bào sinh tinh giảm phân được 6 loại giao tử, tức là 4 (bình thường) + 2 (đột biến). Như vậy, với 3 tế bào sinh tinh giảm phân bình thường ta có 2 trường hợp là: 2 tế bào kiểu 1, 1 tế bào kiểu 2 hoặc 1 tế bào kiểu 1, 2 tế bào kiểu 2.

Theo bài ra, 4 tế bào giảm phân thu được 16 giao tử, giao tử 2 alen trội chiếm 3/8 = 6/16.

 

Trường hợp

ABD

abd

aBD

Abd

Tỉ lệ 2 trội thiếu

1 tế bào kiểu 1, 2 tế bào kiểu 2

2

2

4

4

2

2 tế bào kiểu 1, 1 tế bào kiểu 2

4

4

2

2

4 (loại)

Vậy có 1 tế bào giảm phân bình thường kiểu 1, 2 tế bào giảm phân bình thường kiểu 2 và tế bào rối loạn tạo giao tử 2 A và 2 a\[\frac{{B{\rm{D}}}}{{b{\rm{d}}}}\].

Vậy tỉ lệ giao tử mang 1 alen trội là (4 Abd + 2A)/16 = 6/16 = 37,5%. Đáp án: 37,5%.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).

Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)

TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)

Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)

Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)

\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} =  - 2}\\{{m_2} = 5}\end{array}} \right.\).

Do \(m > 0\) nên nhận \({m_2} = 5.\)

TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)

Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)

Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)

\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} =  - 2}\\{{m_2} = 5}\end{array}} \right.\).

Do \(m < 0\) nên nhận \({m_1} =  - 2.\)

Vậy \({m_1} + {m_2} = 3.\) Chọn A.

Câu 2

Lời giải

Học sinh đọc ngữ liệu, căn cứ vào các hình ảnh “chàng trai ra đảo đã quên mình, máu xương kia dằng dặc suốt ngàn đời, hồn dân tộc ngàn năm không chịu khuất” để thấy những suy ngẫm, chiêm nghiệm của tác giả, đồng thời cùng với đó là sự trân trọng, tự hào đối với lịch sử bảo vệ biển đảo, bảo vệ Tổ quốc. Học sinh căn cứ tiếp vào câu “Dáng con tàu vẫn hướng mãi ra khơi” để thấy sự tiến về phía trước của thế hệ tương lai, thể hiện trách nhiệm của thế hệ trẻ đối với công cuộc bảo vệ Tổ quốc. Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP