Câu hỏi:

09/08/2024 777 Lưu

Một cơ sở khoan giếng đưa ra định mức giá như sau: Giá của mét khoan đầu tiên là \[10\,\,000\] đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm \[3\,\,000\] đồng so với giá của mét khoan ngay trước đó. Một người muốn ký hợp đồng với cơ sở khoan giếng này để khoan một giếng sâu 100 mét lấy nước dùng cho sinh hoạt của gia đình. Hỏi sau khi hoàn thành việc khoan giếng, gia đình đó phải thanh toán cho cơ sở khoan giếng số tiền bằng bao nhiêu? 

A. \[15\,\,580\,\,000\] đồng.
B. \[18\,\,500\,\,000\] đồng. 
C. \[15\,\,850\,\,000\] đồng. 
D. \[15\,\,050\,\,000\] đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi giá của mét khoan đầu tiên là \({u_1} = 10\,\,000\) (đồng).

Khi đó, giá của mét khoan thứ hai là \({u_2} = 10\,\,000 + 3\,\,000 = 13\,\,000\) (đồng).

Tương tự như vậy, giá của mỗi mét khoan lập thành cấp số cộng với công sai \(d = 3\,\,000\).

Vậy số tiền cần thanh toán là:

\({S_{100}} = \frac{{n \cdot \left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} = \frac{{100 \cdot \left( {2 \cdot 10\,\,000 + 99 \cdot 3\,\,000} \right)}}{2} = 15\,\,850\,\,000\) (đồng).

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} - x} \right) \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{{x^2} + 1 - {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)\)

\( = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {2 - a - \frac{3}{x}} \right) \cdot \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right)\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right) = 2 > 0\) nên để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = + \infty \) thì

\(\mathop {\lim }\limits_{x \to + \infty } {\left( {2 - a - \frac{3}{x}} \right)^ = } = 2 - a > 0 \Leftrightarrow a < 2.{\rm{ }}\)

Khi đó \(P = {a^2} - 2a + 4 = {\left( {a - 1} \right)^2} + 3 \ge 3\), vậy \({P_{\min }} = 3.\)

Đáp án: 3.

Câu 2

A. Giáng đòn nặng nề vào âm mưu nô dịch của chủ nghĩa đế quốc. 
B. Mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới. 
C. Cổ vũ mạnh mē các dân tộc thuộc địa cùng đứng lên đấu tranh. 
D. Góp phần thu hẹp hệ thống thuộc địa của chủ nghĩa thực dân.

Lời giải

Thắng lợi của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam không mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới trên thế giới vì thực dân Pháp là thực dân kiểu cũ. Chọn B.

Câu 3

A. \(\left( Q \right):3x - 2y + 4z - 4 = 0.\) 
B. \(\left( Q \right):3x - 2y + 4z + 4 = 0.\) 
C. \(\left( Q \right):3x - 2y + 4z + 5 = 0.\) 
D. \(\left( Q \right):3x + 2y + 4z + 8 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP