Câu hỏi:
09/08/2024 281Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi giá của mét khoan đầu tiên là \({u_1} = 10\,\,000\) (đồng).
Khi đó, giá của mét khoan thứ hai là \({u_2} = 10\,\,000 + 3\,\,000 = 13\,\,000\) (đồng).
Tương tự như vậy, giá của mỗi mét khoan lập thành cấp số cộng với công sai \(d = 3\,\,000\).
Vậy số tiền cần thanh toán là:
\({S_{100}} = \frac{{n \cdot \left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} = \frac{{100 \cdot \left( {2 \cdot 10\,\,000 + 99 \cdot 3\,\,000} \right)}}{2} = 15\,\,850\,\,000\) (đồng).
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông An quyết định bán một phần mảnh đất hình chữ nhật có chu vi \[50{\rm{ }}m.\] Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. biết giá tiền đất khi bán là \[1\,\,500\,\,000\] đồng.Hỏi số tiền lớn nhất mà ông An nhận được khi bán đất là bao nhiêu? (đơn vị: đồng).
Đáp án: ……….
Câu 3:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\), đồng biến trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty \,;\,\,0} \right).\) Biết \(f\left( x \right)\) nhận giá trị dương trên \(\mathbb{R}.\) Số điểm cực trị của hàm số \(y = {x^2} \cdot f\left( x \right)\) là
Đáp án: ……….
Câu 4:
Biết rằng \(\frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}}\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) (với \(a\) là tham số). Tính giá trị nhỏ nhất của \(P = {a^2} - 2a + 4.\)
Đáp án: ……….
Câu 5:
Câu 6:
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
về câu hỏi!