Câu hỏi:
29/07/2024 59Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trong \(\left( {ACA'C'} \right)\) kẻ \(A'K \bot AC' \Rightarrow A'K = \frac{{\sqrt 3 }}{2}.\)
Trong \(\left( {ABA'B'} \right)\) kẻ \(A'H \bot AB' \Rightarrow A'H = 1.\)
Trong \(\left( {A'B'C'} \right)\) kẻ \(A'E \bot B'C' \Rightarrow A'E = \frac{{\sqrt 2 }}{2}.\)
Đặt \(A'B' = a\,;\,\,A'{C^\prime } = b\,;\,\,AA' = c.\)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{1}{{{a^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{A'{H^2}}} = 1}\\{\frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{A'{K^2}}} = \frac{4}{3}}\\{\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{A'{E^2}}} = 2}\end{array}} \right.\).
Cộng theo vế ta có: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{{13}}{6} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{{{a^2}}} = \frac{5}{6}}\\{\frac{1}{{{b^2}}} = \frac{7}{6}}\\{\frac{1}{{{c^2}}} = \frac{1}{6}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \sqrt {\frac{6}{5}} }\\{b = \sqrt {\frac{6}{7}} }\\{c = \sqrt 6 }\end{array}} \right.} \right..\)
Vậy thể tích của khối lăng trụ \({V_{ABC.A'B'C'}} = AA' \cdot \frac{1}{2} \cdot AB \cdot AC = \frac{{3\sqrt {210} }}{{35}}.\)
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông An quyết định bán một phần mảnh đất hình chữ nhật có chu vi \[50{\rm{ }}m.\] Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. biết giá tiền đất khi bán là \[1\,\,500\,\,000\] đồng.Hỏi số tiền lớn nhất mà ông An nhận được khi bán đất là bao nhiêu? (đơn vị: đồng).
Đáp án: ……….
Câu 3:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\), đồng biến trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty \,;\,\,0} \right).\) Biết \(f\left( x \right)\) nhận giá trị dương trên \(\mathbb{R}.\) Số điểm cực trị của hàm số \(y = {x^2} \cdot f\left( x \right)\) là
Đáp án: ……….
Câu 4:
Biết rằng \(\frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}}\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) (với \(a\) là tham số). Tính giá trị nhỏ nhất của \(P = {a^2} - 2a + 4.\)
Đáp án: ……….
Câu 5:
Câu 6:
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
về câu hỏi!