Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {4\,;\,\, - 2\,;\,\,6} \right),\,\,B\left( {2\,;\,\,4\,;\,\,2} \right)\) và điểm \(M\) thuộc mặt phẳng \((\alpha ):x + 2y - 3z - 7 = 0\) sao cho \(\overrightarrow {MA} \cdot \overrightarrow {MB} \) nhỏ nhất. Tọa độ của \(M\) bằng
Quảng cáo
Trả lời:
Gọi \(I\) là trung điểm \(AB \Rightarrow I\left( {3\,;\,\,1\,;\,\,4} \right).\)
Gọi \(H\) là hình chiếu của \(I\) xuống mặt phẳng \((\alpha ).\)
Ta có \[\overrightarrow {MA} \cdot \overrightarrow {MB} = \left( {\overrightarrow {MI} + \overrightarrow {IA} } \right) \cdot \left( {\overrightarrow {MI} + \overrightarrow {IB} } \right) = M{I^2} + \overrightarrow {MI} \cdot \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) - I{A^2} = M{I^2} - I{A^2}\].
Do IA không đổi nên \(\overrightarrow {MA} \cdot \overrightarrow {MB} \) nhỏ nhất khi \[MI\] nhỏ nhất \( \Leftrightarrow MI = IH \Leftrightarrow M \equiv H.\)
Gọi \(\Delta \) là đường thẳng đi qua \(I\) và vuông góc với mặt phẳng \((\alpha ).\)
Khi đó \(\Delta \) nhận \(\overrightarrow {{n_{(\alpha )}}} = \left( {1\,;\,\,2\,;\,\, - 3} \right)\) làm vectơ chỉ phương.
Do đó \(\Delta \) có phương trình \(\left\{ {\begin{array}{*{20}{l}}{x = 3 + t}\\{y = 1 + 2t}\\{z = 4 - 3t}\end{array}} \right..\)
\(H \in \Delta \Leftrightarrow H\left( {3 + t\,;\,\,1 + 2t\,;\,\,4 - 3t} \right){\rm{. }}\)\(H \in (\alpha ) \Leftrightarrow \left( {3 + t} \right) + 2\left( {1 + 2t} \right) - 3\left( {4 - 3t} \right) - 7 = 0 \Leftrightarrow t = 1 \Leftrightarrow H\left( {4\,;\,\,3\,;\,\,1} \right).\)
Vậy \(M\left( {4\,;\,\,3\,;\,\,1} \right).\) Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} - x} \right) \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}\)
\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{{x^2} + 1 - {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)\)
\( = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {2 - a - \frac{3}{x}} \right) \cdot \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right)\)
Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right) = 2 > 0\) nên để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = + \infty \) thì
\(\mathop {\lim }\limits_{x \to + \infty } {\left( {2 - a - \frac{3}{x}} \right)^ = } = 2 - a > 0 \Leftrightarrow a < 2.{\rm{ }}\)
Khi đó \(P = {a^2} - 2a + 4 = {\left( {a - 1} \right)^2} + 3 \ge 3\), vậy \({P_{\min }} = 3.\)
Đáp án: 3.
Lời giải
Thắng lợi của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam không mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới trên thế giới vì thực dân Pháp là thực dân kiểu cũ. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.