Câu hỏi:
29/07/2024 600Quảng cáo
Trả lời:
Ta có \(\sqrt {2{x^2} - 4mx + 3m} = x - m\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge m}\\{2{x^2} - 4mx + 3m = {{\left( {x - m} \right)}^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge m}\\{f\left( x \right) = {x^2} - 2mx + 3m - {m^2} = 0}\end{array}} \right.} \right.\).
Để phương trình ban đầu có đúng một nghiệm thì phương trình \((*)\) có đúng một nghiệm \(x \ge m.\)
TH1: Phương trình \((*)\) có hai nghiệm thỏa mãn \({x_1} < m < {x_2}\)
\( \Leftrightarrow f(m) < 0 \Leftrightarrow 3m - 2{m^2} < 0 \Leftrightarrow 0 < m < \frac{3}{2}{\rm{. }}\)
TH2: Phương trình (*) có nghiệm kép \({x_0} > m \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' = 0}\\{{x_0} = m > m}\end{array}} \right.\) (vô lý)
TH3: Phương trình \((*)\) có một nghiệm \({x_1} = m.\) Kiểm tra nghiệm \({x_2}:(*)\) có một nghiệm
\({x_1} = m \Leftrightarrow 3m - 2{m^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{m = \frac{3}{2}}\end{array}} \right.\)
• Với \(m = 0\) thì \((*) \Leftrightarrow x = 0\) (nhận) \( \Rightarrow m = 0\) thỏa đề bài.
• Với \(m = \frac{3}{2} \Rightarrow {x_1} = \frac{3}{2}\) nên \((*) \Leftrightarrow {x^2} - 3x + \frac{9}{4} = 0 \Leftrightarrow {\left( {x - \frac{3}{2}} \right)^2} = 0 \Leftrightarrow x = \frac{3}{2}\) (nhận)
Do đó \(m = \frac{3}{2}\) thỏa mãn đề bài.
Giá trị của \(m\) cần tìm là: \(0 \le m \le \frac{3}{2} \Rightarrow \) Có 2 giá trị nguyên của tham số \(m\) thỏa mãn.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} - x} \right) \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}\)
\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{{x^2} + 1 - {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)\)
\( = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {2 - a - \frac{3}{x}} \right) \cdot \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right)\)
Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right) = 2 > 0\) nên để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = + \infty \) thì
\(\mathop {\lim }\limits_{x \to + \infty } {\left( {2 - a - \frac{3}{x}} \right)^ = } = 2 - a > 0 \Leftrightarrow a < 2.{\rm{ }}\)
Khi đó \(P = {a^2} - 2a + 4 = {\left( {a - 1} \right)^2} + 3 \ge 3\), vậy \({P_{\min }} = 3.\)
Đáp án: 3.
Lời giải
Thắng lợi của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam không mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới trên thế giới vì thực dân Pháp là thực dân kiểu cũ. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)