Câu hỏi:

29/07/2024 283

Có bao nhiêu số nguyên \(m\) để phương trình \(\sqrt {2{x^2} - 4mx + 3m} = x - m\) (với \(m\) là tham số) có nghiệm duy nhất? 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\sqrt {2{x^2} - 4mx + 3m} = x - m\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge m}\\{2{x^2} - 4mx + 3m = {{\left( {x - m} \right)}^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge m}\\{f\left( x \right) = {x^2} - 2mx + 3m - {m^2} = 0}\end{array}} \right.} \right.\).

Để phương trình ban đầu có đúng một nghiệm thì phương trình \((*)\) có đúng một nghiệm \(x \ge m.\)

TH1: Phương trình \((*)\) có hai nghiệm thỏa mãn \({x_1} < m < {x_2}\)

\( \Leftrightarrow f(m) < 0 \Leftrightarrow 3m - 2{m^2} < 0 \Leftrightarrow 0 < m < \frac{3}{2}{\rm{. }}\)

TH2: Phương trình (*) có nghiệm kép \({x_0} > m \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' = 0}\\{{x_0} = m > m}\end{array}} \right.\) (vô lý)

TH3: Phương trình \((*)\) có một nghiệm \({x_1} = m.\) Kiểm tra nghiệm \({x_2}:(*)\) có một nghiệm

\({x_1} = m \Leftrightarrow 3m - 2{m^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{m = \frac{3}{2}}\end{array}} \right.\)

Với \(m = 0\) thì \((*) \Leftrightarrow x = 0\) (nhận) \( \Rightarrow m = 0\) thỏa đề bài.

Với \(m = \frac{3}{2} \Rightarrow {x_1} = \frac{3}{2}\) nên \((*) \Leftrightarrow {x^2} - 3x + \frac{9}{4} = 0 \Leftrightarrow {\left( {x - \frac{3}{2}} \right)^2} = 0 \Leftrightarrow x = \frac{3}{2}\) (nhận)

Do đó \(m = \frac{3}{2}\) thỏa mãn đề bài.

Giá trị của \(m\) cần tìm là: \(0 \le m \le \frac{3}{2} \Rightarrow \) Có 2 giá trị nguyên của tham số \(m\) thỏa mãn.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết rằng \(\frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}}\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) (với \(a\) là tham số). Tính giá trị nhỏ nhất của \(P = {a^2} - 2a + 4.\)

Đáp án: ……….

Xem đáp án » 29/07/2024 5,538

Câu 2:

Nội dung nào sau đây không phải là ý nghĩa quốc tế của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam? 

Xem đáp án » 29/07/2024 2,501

Câu 3:

Diện tích hình phẳng giới hạn bởi các đường \((P):y = {x^2} - 2x + 2\), trục tung tiếp tuyến của \(\left( P \right)\) tại \(M\left( {3\,;\,\,5} \right)\) là

Đáp án: ……….

Xem đáp án » 29/07/2024 1,172

Câu 4:

Trong không gian \[Oxyz,\] cho điểm \(A\left( {2\,;\,\, - 1\,;\,\, - 3} \right)\) và mặt phẳng \(\left( P \right):3x - 2y + 4z - 5 = 0.\) Mặt phẳng \(\left( Q \right)\) đi qua \(A\) và song song với mặt phẳng \(\left( P \right)\) có phương trình là 

Xem đáp án » 29/07/2024 1,161

Câu 5:

Ông An quyết định bán một phần mảnh đất hình chữ nhật có chu vi \[50{\rm{ }}m.\] Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. biết giá tiền  đất khi bán là \[1\,\,500\,\,000\] đồng.Hỏi số tiền lớn nhất mà ông An nhận được khi bán đất là bao nhiêu? (đơn vị: đồng).

Đáp án: ……….

Xem đáp án » 29/07/2024 974

Câu 6:

Trong kĩ thuật chuyển gen có bước nào sau đây?

Xem đáp án » 29/07/2024 934

Câu 7:

Từ 5 chữ số \[0\,;\,\,1\,;\,\,3\,;\,\,5\,;\,\,7\] có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau và không chia hết cho 5?

Đáp án: ……….

Xem đáp án » 29/07/2024 860

Bình luận


Bình luận