Câu hỏi:

29/07/2024 253 Lưu

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân tại \(A\) có \(AB = AC = 2a,\) \(\widehat {CAB} = 120^\circ .\) Mặt phẳng \(\left( {AB'C'} \right)\) tạo với đáy một góc \(60^\circ \). Thể tích khối lăng trụ là 

A. \(2{a^3}\). 
B. \(\frac{{3{a^3}}}{8}\). 
C. \(\frac{{{a^3}}}{3}\).
D. \(3{a^3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân tại \(A\) có \(AB = AC = 2a,\) \(\widehat {CAB} = 120^\circ .\) Mặt phẳng \(\left( {AB'C'} \right)\)  (ảnh 1)

Gọi \(D\) là trung điểm của \(B'C'\).

Vì tam giác \(A'B'C'\) cân tại \(A'\) nên \(A'D \bot B'C'\) (trung tuyến đồng thời là đường cao).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{A'D \bot B'C'}\\{AA' \bot B'C'}\end{array}} \right. \Rightarrow B'C' \bot \left( {AA'D} \right) \Rightarrow B'C' \bot AD\)

\(\left\{ {\begin{array}{*{20}{l}}{\left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'}\\{\left( {AB'C'} \right) \supset AD \bot B'C'}\\{\left( {A'B'C'} \right) \supset A'D \bot B'C'}\end{array}} \right.\)

\[ \Rightarrow \widehat {\left( {\left( {AB'C'} \right),\left( {A'B'C'} \right)} \right)} = \widehat {\left( {AD,\,\,A'D} \right)} = \widehat {ADA'} = 60^\circ \].

Vì tam giác \(A'B'C'\) cân tại \(A'\) nên \(\widehat {DA'C'} = \frac{1}{2}\widehat {B'A'C'} = 60^\circ \) (trung tuyến đồng thời là phân giác).

Xét tam giác vuông \(A'C'D\) có: \(A'D = A'C' \cdot \cos 60^\circ = 2a \cdot \frac{1}{2} = a.\)

Xét tam giác vuông \(AA'D\) có: \(AA' = A'D \cdot \tan 60^\circ = a \cdot \sqrt 3 .\)

Ta có: \({S_{ABC}} = \frac{1}{2}AB \cdot AC \cdot \sin \widehat {BAC} = \frac{1}{2} \cdot 2a \cdot 2a \cdot \frac{{\sqrt 3 }}{2} = {a^2}\sqrt 3 .\)

Vậy \({V_{ABC.A'B'C'}} = AA' \cdot {S_{ABC}} = a\sqrt 3 \cdot {a^2}\sqrt 3 = 3{a^3}.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} - x} \right) \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{{x^2} + 1 - {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)\)

\( = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {2 - a - \frac{3}{x}} \right) \cdot \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right)\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right) = 2 > 0\) nên để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = + \infty \) thì

\(\mathop {\lim }\limits_{x \to + \infty } {\left( {2 - a - \frac{3}{x}} \right)^ = } = 2 - a > 0 \Leftrightarrow a < 2.{\rm{ }}\)

Khi đó \(P = {a^2} - 2a + 4 = {\left( {a - 1} \right)^2} + 3 \ge 3\), vậy \({P_{\min }} = 3.\)

Đáp án: 3.

Câu 2

A. Giáng đòn nặng nề vào âm mưu nô dịch của chủ nghĩa đế quốc. 
B. Mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới. 
C. Cổ vũ mạnh mē các dân tộc thuộc địa cùng đứng lên đấu tranh. 
D. Góp phần thu hẹp hệ thống thuộc địa của chủ nghĩa thực dân.

Lời giải

Thắng lợi của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam không mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới trên thế giới vì thực dân Pháp là thực dân kiểu cũ. Chọn B.

Câu 3

A. \(\left( Q \right):3x - 2y + 4z - 4 = 0.\) 
B. \(\left( Q \right):3x - 2y + 4z + 4 = 0.\) 
C. \(\left( Q \right):3x - 2y + 4z + 5 = 0.\) 
D. \(\left( Q \right):3x + 2y + 4z + 8 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP