Câu hỏi:

19/08/2025 999 Lưu

Đường thẳng \(y = m\) tiếp xúc với đồ thị hàm số \[\left( C \right):y = {x^4} - 8{x^2} + 35\] tại hai điểm phân biệt. Tung độ của tiếp điểm là

Đáp án: ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(y = m\) tiếp xúc với đường cong \((C):f\left( x \right) = {x^4} - 8{x^2} + 35\)

Khi hệ sau có nghiệm \(\left\{ {\begin{array}{*{20}{l}}{{x^4} - 8{x^2} - 35 = m}\\{{{\left( {{x^4} - 8{x^2} - 13} \right)}^\prime } = m'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^4} - 8{x^2} - 35 = m}\\{4{x^3} - 16x = 0}\end{array}} \right.} \right.\).

Từ \((2) \Rightarrow 4{x^3} - 16x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\\{x = - 2}\end{array}} \right..\)

Với \(x = 0\) thay vào (1) ta được \(m = 35.\)

Với \(x = 2\) thay vào (1) ta được \(m = 19.\)

Với \(x = - 2\) thay vào (1) ta được \(m = 19.\)

Vì đường thẳng \(y = m\) tiếp xúc với đồ thị \((C):f(x) = {x^4} - 8{x^2} + 35\) tại hai điểm phân biệt, tức là phương trình (2) có 2 nghiệm kép. Thử lại, ta có \(m = 19\) thỏa mãn.

Khi đó, tung độ tiếp điểm là \(y = 19.\)

Đáp án: 19.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} - x} \right) \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{{x^2} + 1 - {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)\)

\( = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {2 - a - \frac{3}{x}} \right) \cdot \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right)\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right) = 2 > 0\) nên để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = + \infty \) thì

\(\mathop {\lim }\limits_{x \to + \infty } {\left( {2 - a - \frac{3}{x}} \right)^ = } = 2 - a > 0 \Leftrightarrow a < 2.{\rm{ }}\)

Khi đó \(P = {a^2} - 2a + 4 = {\left( {a - 1} \right)^2} + 3 \ge 3\), vậy \({P_{\min }} = 3.\)

Đáp án: 3.

Câu 2

A. Giáng đòn nặng nề vào âm mưu nô dịch của chủ nghĩa đế quốc. 
B. Mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới. 
C. Cổ vũ mạnh mē các dân tộc thuộc địa cùng đứng lên đấu tranh. 
D. Góp phần thu hẹp hệ thống thuộc địa của chủ nghĩa thực dân.

Lời giải

Thắng lợi của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam không mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới trên thế giới vì thực dân Pháp là thực dân kiểu cũ. Chọn B.

Câu 3

A. \(\left( Q \right):3x - 2y + 4z - 4 = 0.\) 
B. \(\left( Q \right):3x - 2y + 4z + 4 = 0.\) 
C. \(\left( Q \right):3x - 2y + 4z + 5 = 0.\) 
D. \(\left( Q \right):3x + 2y + 4z + 8 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP