Câu hỏi:
29/07/2024 4,194Cho nửa đường tròn tâm O đường kính AB. Kẻ các tiếp tuyến Ax, By của đường tròn (O). Qua điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By lần lượt tại C, D. Gọi N là giao điểm của AD và BC và H là giao điểm của MN và AB (Hình 24). Chứng minh:
a) MN ⊥ AB;
b) MN = NH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Do Ax, By là tiếp tuyến của đường tròn tâm O đường kính AB nên Ax ⊥ AB, By ⊥ AB, suy ra Ax // By.
Đường tròn (O) có:
⦁ hai tiếp tuyến Ax, CD cắt nhau tại C nên CA = CM;
⦁ hai tiếp tuyến By, CD cắt nhau tại D nên DB = DM.
Xét ∆ANC có AC // BD nên (hệ quả định lí Thalès) suy ra
Do đó MN // AC (định lí Thalès đảo) hay MN // Ax
Mà Ax ⊥ AB nên MN ⊥ AB.
b) Xét ∆ACD có MN // AC nên (hệ quả của định lí Thalès).
Xét ∆ANC có AC // BD nên (hệ quả của định lí Thalès).
Suy ra (tính chất tỉ lệ thức) hay
Xét ∆ABC có NH // AC nên (hệ quả của định lí Thalès).
Do đó, ta có:
Vậy MN = NH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn tâm O bán kính 15 cm. Điểm A nằm ngoài đường tròn sao cho OA = 25 cm. Kẻ tiếp tuyến AB của đường tròn (O). Kẻ dây BC vuông góc với OA tại H.
a) Chứng minh AC là tiếp tuyến của đường tròn (O).
b) Tính độ dài các cạnh của tam giác ABC.
Câu 2:
Cho đường tròn (O) và dây AB khác đường kính. Kẻ bán kính OC đi qua trung điểm I của đoạn thẳng AB. Vẽ đường tròn (C; CI). Kẻ tiếp tuyến BD của đường tròn (C) với D là tiếp điểm và D khác I. Chứng minh:
a) Bốn đỉnh của tứ giác BDCI cùng nằm trên một đường tròn;
b) BD là tiếp tuyến của đường tròn (O).
Câu 3:
Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O’) là đường tròn đường kính HC. Chứng minh:
a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O’);
b) Hai đường tròn (O) và (O’) tiếp xúc ngoài;
c) AH là tiếp tuyến chung của hai đường tròn (O) và (O’);
d) AH = DE;
e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.
Câu 4:
Cho đường tròn (O; R) và điểm A nằm trên đường tròn. Lấy điểm B sao cho A là trung điểm của đoạn thẳng OB. Kẻ hai tiếp tuyến BM, BN của đường tròn (O).
a) Tính số đo góc MBN và độ dài đoạn thẳng BM theo R.
b) Tứ giác AMON là hình gì? Vì sao?
c) Tính độ dài đoạn thẳng OH theo R với H là giao điểm của OA và MN.
Câu 5:
Cho hai đường tròn (O; R) và (O’; r) tiếp xúc ngoài với nhau tại A với R ≠ r. Đường nối OO’ lần lượt cắt hai đường tròn (O) và (O’) tại B và C. Đường thẳng a lần lượt tiếp xúc với hai đường tròn (O) và (O’) tại D và E. Gọi M là giao điểm của BD và CE. Chứng minh:
a)
b) MA tiếp xúc với hai đường tròn (O) và (O’);
c) MD.MB = ME.MC.
Câu 6:
Hình 23 minh hoạ thước phân giác. Thước gồm hai thanh gỗ ghép lại thành góc vuông BAC và một tấm gỗ có dạng hình tam giác ACD với AD là tia phân giác của góc BAC. Có thể dùng thước phân giác để tìm tâm của một hình tròn hay không? Vì sao?
về câu hỏi!