Câu hỏi:
29/07/2024 261Cho hàm số \(y = m\left( {4{x^3} - 18{x^2} + 24x - 9} \right) + 1\) có đồ thị \[\left( C \right).\] Biết \(O\) là gốc toạ độ và \(A\) là điểm cực đại của \[\left( C \right).\] Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho \(OA < 10\)?
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Với \(m \ne 0\), ta có \(y' = m\left( {12{x^2} - 36x + 24} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = 2}\end{array}} \right..\)
TH1: \(m > 0\) suy ra \(x = 1\) là điểm cực đại của hàm số
Do đó \(A\left( {1\,;\,\,m + 1} \right) \Rightarrow \overrightarrow {OA} = \left( {1\,;\,\,m + 1} \right) \Leftrightarrow OA = \sqrt {{{(m + 1)}^2} + 1} \)
Mà \(OA < 10 \Leftrightarrow \sqrt {{{\left( {m + 1} \right)}^2} + 1} < 10 \Leftrightarrow {\left( {m + 1} \right)^2} < 99\)
\( \Leftrightarrow - 3\sqrt {11} - 1 < m < 3\sqrt {11} - 1\)
Kết hợp với \(m > 0,m \in \mathbb{Z}\) suy ra \(m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8} \right\}.\)
TH2: \(m < 0\) suy ra \(x = 2\) là điểm cực đại của hàm số
Do đó \(A\left( {2\,;\,\,1 - m} \right) \Rightarrow \overrightarrow {OA} = \left( {1\,;\,\,1 - m} \right) \Leftrightarrow OA = \sqrt {{{\left( {1 - m} \right)}^2} + 1} \)
Mà \(OA < 10 \Leftrightarrow \sqrt {{{\left( {1 - m} \right)}^2} + 1} < 10 \Leftrightarrow {\left( {m - 1} \right)^2} < 99\)\( \Leftrightarrow - 3\sqrt {11} + 1 < m < 3\sqrt {11} + 1\).
Kết hợp với \(m < 0\,,\,\,m \in \mathbb{Z}\) suy ra \[m \in \left\{ { - 1\,;\,\, - 2\,;\,\, - 3\,;\,\, - 4\,;\,\, - 5\,;\,\, - 6\,;\,\, - 7\,;\,\, - 8} \right\}.\]
Vậy có tất cả 16 giá trị nguyên của tham số m.
Đáp án: 16.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết rằng \(\frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}}\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) (với \(a\) là tham số). Tính giá trị nhỏ nhất của \(P = {a^2} - 2a + 4.\)
Đáp án: ……….
Câu 2:
Câu 3:
Diện tích hình phẳng giới hạn bởi các đường \((P):y = {x^2} - 2x + 2\), trục tung tiếp tuyến của \(\left( P \right)\) tại \(M\left( {3\,;\,\,5} \right)\) là
Đáp án: ……….
Câu 4:
Câu 5:
Ông An quyết định bán một phần mảnh đất hình chữ nhật có chu vi \[50{\rm{ }}m.\] Mảnh đất còn lại sau khi bán là một hình vuông cạnh bằng chiều rộng của mảnh đất hình chữ nhật ban đầu. biết giá tiền đất khi bán là \[1\,\,500\,\,000\] đồng.Hỏi số tiền lớn nhất mà ông An nhận được khi bán đất là bao nhiêu? (đơn vị: đồng).
Đáp án: ……….
Câu 7:
Từ 5 chữ số \[0\,;\,\,1\,;\,\,3\,;\,\,5\,;\,\,7\] có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau và không chia hết cho 5?
Đáp án: ……….
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
về câu hỏi!