Câu hỏi:

19/08/2025 129 Lưu

Trong không gian \[Oxyz,\] cho ba điểm\[A\left( { - 1\,;\,\,0\,;\,\,1} \right),\,\,B\left( {3\,;\,\,2\,;\,\,1} \right),\,\,C\left( {5\,;\,\,3\,;\,\,7} \right).\] Điểm \[M\left( {a\,;\,\,b\,;\,\,c} \right)\] thỏa mãn \(MA = MB\) sao cho \(MA + MC\) nhỏ nhất. Tính \(P = a + b + c.\)

Đáp án: ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cách 1: Ta có \(MA = MB \Leftrightarrow {\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 1} \right)^2} = {\left( {a - 3} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 1} \right)^2}\)

\( \Leftrightarrow 2a + 1 - 2c + 1 = - 6a + 9 - 4b + 4 - 2c + 1 \Leftrightarrow 8a + 4b - 12 = 0 \Leftrightarrow 2a + b - 3 = 0\)

\( \Rightarrow M\) thuộc mặt phẳng trung trực của \[AB\] có phương trình \((P):2x + y - 3 = 0.\)

Ta thấy \[A\,,\,\,C\] nằm về hai phía của \((P) \Rightarrow MA + MC \ge AC\)

Dấu "=" xảy ra khi \(M = AC \cap (P) \Rightarrow M\left( {1\,;\,\,1\,;\,\,3} \right).\)

\( \Rightarrow a + b + c = 5.{\rm{ }}\)

Cách 2: Ta có \(MA = MB \Leftrightarrow {\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 1} \right)^2} = {\left( {a - 3} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 1} \right)^2}\)

\( \Leftrightarrow 2a + 1 - 2c + 1 = - 6a + 9 - 4b + 4 - 2c + 1 \Leftrightarrow 8a + 4b - 12 = 0 \Leftrightarrow 2a + b - 3 = 0\)

\( \Rightarrow \) Tập hợp điểm \(M\) là mặt phẳng \((P):2x + y - 3 = 0\)

Đặt \(M\left( {x\,;\,\,3 - 2x\,;\,\,z} \right)\) với \(M \in (P)\).

Ta có: \(MA + MC = \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {3 - 2x} \right)}^2} + {{\left( {z - 1} \right)}^2}} + \sqrt {{{\left( {5 - x} \right)}^2} + {{\left( {2x} \right)}^2} + {{\left( {7 - z} \right)}^2}} \)

\[ \ge \sqrt {{{\left( {x + 1 + 5 - x} \right)}^2} + {{\left( {3 - 2x + 2x} \right)}^2} + {{\left( {z - 1 + 7 - z} \right)}^2}} = 9\].

Dấu  xảy ra \( \Leftrightarrow \frac{{x + 1}}{{5 - x}} = \frac{{3 - 2x}}{{2x}} = \frac{{z - 1}}{{7 - z}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{z = 3}\end{array} \Rightarrow M\left( {1\,;\,\,1\,;\,\,3} \right).} \right.\)

Do đó \(a + b + c = 5.{\rm{ }}\)

Đáp án: 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{\left( {\sqrt {{x^2} + 1} - x} \right) \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)}}{{{x^2} + 1 - {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2 - a} \right)x - 3} \right] \cdot \left( {\sqrt {{x^2} + 1} + x} \right)\)

\( = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {2 - a - \frac{3}{x}} \right) \cdot \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right)\)

Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{{{x^2}}}} + 1} \right) = 2 > 0\) nên để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {2 - a} \right)x - 3}}{{\sqrt {{x^2} + 1} - x}} = + \infty \) thì

\(\mathop {\lim }\limits_{x \to + \infty } {\left( {2 - a - \frac{3}{x}} \right)^ = } = 2 - a > 0 \Leftrightarrow a < 2.{\rm{ }}\)

Khi đó \(P = {a^2} - 2a + 4 = {\left( {a - 1} \right)^2} + 3 \ge 3\), vậy \({P_{\min }} = 3.\)

Đáp án: 3.

Câu 2

A. Giáng đòn nặng nề vào âm mưu nô dịch của chủ nghĩa đế quốc. 
B. Mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới. 
C. Cổ vũ mạnh mē các dân tộc thuộc địa cùng đứng lên đấu tranh. 
D. Góp phần thu hẹp hệ thống thuộc địa của chủ nghĩa thực dân.

Lời giải

Thắng lợi của cuộc kháng chiến chống thực dân Pháp xâm lược (1945-1954) của quân dân Việt Nam không mở đầu cho quá trình sụp đổ của chủ nghĩa thực dân kiểu mới trên thế giới vì thực dân Pháp là thực dân kiểu cũ. Chọn B.

Câu 3

A. \(\left( Q \right):3x - 2y + 4z - 4 = 0.\) 
B. \(\left( Q \right):3x - 2y + 4z + 4 = 0.\) 
C. \(\left( Q \right):3x - 2y + 4z + 5 = 0.\) 
D. \(\left( Q \right):3x + 2y + 4z + 8 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP