Câu hỏi:
02/08/2024 3,979
Trong năm đầu tiên đi làm, anh A được nhận lương là 10 triệu đồng mỗi tháng. Cứ hết một năm, anh A lại được tăng lương, mỗi tháng năm sau tăng \[12\% \] so với mỗi tháng năm trước. Mỗi khi lĩnh lương anh A đều cất đi phần lương tăng so với năm ngay trước để tiết kiệm mua ô tô. Hỏi sau ít nhất bao nhiêu năm thì anh A mua được ô tô giá 500 triệu biết rắng anh A được gia đình hỗ trợ \[32\% \] giá trị chiếc xe?
Quảng cáo
Trả lời:
Số tiền anh A cần tiết kiệm là \(500 - 500 \cdot 0,32 = 340\) (triệu đồng).
Gọi số tiền mà anh A nhận được ở mỗi tháng trong năm đầu tiên là \({u_1} = 10\) (triệu đồng).
Số tiền mà anh A nhận được ở mỗi tháng trong năm thứ hai là:
\({u_2} = {u_1} \cdot \left( {1 + 0,12} \right) = {u_1} \cdot 1,12\) (triệu đồng).
Thì số tiền mà anh A nhận được ở mỗi tháng trong năm thứ ba là:
\({u_3} = {u_1} \cdot {\left( {1 + 0,12} \right)^2} = {u_1} \cdot {\left( {1,12} \right)^2}\) (triệu đồng).
Số tiền mà anh A nhận được ở mỗi tháng trong năm thứ \(n\) là
\({u_n} = {u_1} \cdot {\left( {1 + 0,12} \right)^{n - 1}} = {u_1} \cdot {\left( {1,12} \right)^{n - 1}}\)
Vậy số tiền mà anh A tiết kiệm được sau \(n\) năm là
12. \(\left( {{u_2} - {u_1} + {u_3} - {u_2} + \ldots + {u_{n - 1}} - {u_{n - 2}} + {u_n} - {u_{n - 1}}} \right) = 12\left( {{u_n} - {u_1}} \right)\)
\( = 12 \cdot \left[ {{u_1} \cdot {{\left( {1,12} \right)}^{n - 1}} - {u_1}} \right] = 340\) với \({u_1} = 10\) suy ra \(n \approx 13\) năm. Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)
Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.
Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]
Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)
Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)
Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)
Số tiền thu được là \(T = 100S = 100\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).
Đáp án: 7445.
Lời giải
Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)
Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)
Khi đó tổng diện tích bề mặt xây là
\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).
Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:
\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.