Câu hỏi:
02/08/2024 17,491
Cầu Nhật Tân bắc qua sông Hồng được xem là chiếc cầu dây văng dài nhất Việt Nam năm 2022. Cầu có 5 trụ tháp chính kết nối các nhịp dây văng đỡ toàn bộ phần chính của cây cầu, cũng là để tượng trưng cho 5 cửa ô cổ kính của Hà Nội. Mỗi trụ tháp được kiến trúc tạo dáng mĩ thuật phía trong bằng đường cong tựa như một parabol.
Giả sử rằng mặt trong của trụ cầu là một parabol như vẽ, biết độ rộng của mặt đường khoảng \[43{\rm{ }}m.\] Một người đã dùng dây dọi (không giãn) gắn lên thành trụ cầu ở vị trí \[B\] và điều chỉnh độ dài dây dọi để quả nặng vừa chạm đất (khi lặng gió), sau đó đo được chiều dài đoạn dây dọi sử dụng là \[1,87{\rm{ }}m\] và khoảng cách từ chân trụ cầu đến quả nặng là \[20{\rm{ }}cm.\] Nếu dùng dữ liệu tự thu thập được và tính toán theo cách ở trên thì người này sẽ ước tính được độ cao từ đỉnh vòm phía trong một trụ của cầu Nhật Tân tới mặt đường là bao nhiêu mét (làm tròn đến hàng đơn vị)?
Đáp án: ……….

Giả sử rằng mặt trong của trụ cầu là một parabol như vẽ, biết độ rộng của mặt đường khoảng \[43{\rm{ }}m.\] Một người đã dùng dây dọi (không giãn) gắn lên thành trụ cầu ở vị trí \[B\] và điều chỉnh độ dài dây dọi để quả nặng vừa chạm đất (khi lặng gió), sau đó đo được chiều dài đoạn dây dọi sử dụng là \[1,87{\rm{ }}m\] và khoảng cách từ chân trụ cầu đến quả nặng là \[20{\rm{ }}cm.\] Nếu dùng dữ liệu tự thu thập được và tính toán theo cách ở trên thì người này sẽ ước tính được độ cao từ đỉnh vòm phía trong một trụ của cầu Nhật Tân tới mặt đường là bao nhiêu mét (làm tròn đến hàng đơn vị)?
Đáp án: ……….
Quảng cáo
Trả lời:
Đồ thị hàm số bậc hai \(y = a{x^2} + bx + c\) đi qua gốc tọa độ \(O\left( {0\,;\,\,0} \right)\) nên \(c = 0.\)
Suy ra công thức hàm số là \(a{x^2} + bx.\)
Mặt khác đồ thị hàm số qua hai điểm \(A\left( {43\,;\,\,0} \right),\,\,B\left( {0,2\,;\,\,1,87} \right)\) nên ta có hệ phương trình:
\[\left\{ {\begin{array}{*{20}{l}}{a \cdot {{\left( {0,2} \right)}^2} + b \cdot 0,2 = 1,87}\\{a \cdot {{43}^2} + b \cdot 43 = 0}\end{array}} \right.\]
Suy ra \(a = - \frac{{187}}{{856}};\,\,b = \frac{{8041}}{{856}}\) nên có hàm số \(y = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x.\)
Hình chiếu của đỉnh \(S\) trên trục hoành là \(H\) nên
\({y_S} = f\left( {{x_S}} \right) = f\left( {{x_H}} \right) = f\left( {\frac{{{x_A}}}{2}} \right) = f\left( {\frac{{43}}{2}} \right) \approx 101\,\,(m).\)
Vậy độ cao từ đỉnh vòm phia trong một trụ của cầu Nhật Tân tới mặt đường là khoảng \(101\;\,\,{\rm{m}}.\)
Đáp án: 101.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)
Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.
Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]
Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)
Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)
Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)
Số tiền thu được là \(T = 100S = 100\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).
Đáp án: 7445.
Lời giải
Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)
Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)
Khi đó tổng diện tích bề mặt xây là
\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).
Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:
\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.