Câu hỏi:

06/08/2024 119

Đặt điện áp xoay chiều có giá trị hiệu dụng U không đổi nhưng tần số thay đổi được vào hai đầu đoạn mạch AB gồm cuộn dây thuần cảm có độ tự cảm L, điện trở R và tụ điện có điện dung C mắc nối tiếp như hình vẽ. Đồ thị biểu diễn sự phụ thuộc của điện áp hiệu dụng giữa hai đầu đoạn mạch AN (đường màu đỏ) và điện áp hiệu dụng giữa hai đầu đoạn mạch MN (đường màu đen) theo giá trị tần số góc \[{\rm{\omega }}\] như hình vẽ. Khi \[{\rm{\omega }} = y\] thì hệ số công suất của đoạn mạch AB có giá trị nào sau đây?

Đặt điện áp xoay chiều có giá trị hiệu dụng U không đổi nhưng tần số thay đổi được vào hai đầu đoạn mạch AB gồm cuộn dây thuần cảm có độ tự cảm L,  (ảnh 1)

Làm tròn đến chữ số thập phân thứ nhất.

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có, khi UAN cực đại thì:

\({U_{AN}} = {U_{RL}} = \frac{{U.\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{{U.\sqrt {{R^2} + {{({\rm{\omega }}L)}^2}} }}{{\sqrt {{R^2} + {{\left( {{\rm{\omega }}L - \frac{1}{{{\rm{\omega }}C}}} \right)}^2}} }} = \frac{U}{{\sqrt {1 - {p^{ - 2}}} }} \cdot \) Với \(p = \frac{1}{2}\left( {1 + \sqrt {1 + 2\frac{{{R^2}C}}{L}} } \right)\)

Từ đồ thị ta thấy \({{\rm{U}}_{{\rm{AN}}}} = \frac{5}{3}{\rm{U}} \Rightarrow {\rm{p}} = 1,25 \Rightarrow \frac{{{{\rm{R}}^2}{\rm{C}}}}{{\rm{L}}} = 0,625\)

Tại \({\rm{\omega }} = y\) thì \({U_{L\max }}\), ta có: \(\left\{ {\begin{array}{*{20}{l}}{{Z_C} = \sqrt {\frac{L}{C} - \frac{{{R^2}}}{2}} }\\{{Z_L} = \frac{L}{C}.\frac{1}{{{Z_C}}}}\end{array} \Rightarrow \frac{{{Z_L}}}{{{Z_C}}} = \frac{L}{C}.\frac{1}{{\frac{L}{C} - \frac{{{R^2}}}{2}}} = \frac{1}{{1 - \frac{{{R^2}C}}{L}}} = 1,455} \right.\)

Chuẩn hóa số liệu: \({Z_C} = 1;{Z_L} = 1,455;R = 0,95\)

Hệ số công suất: \(\cos {\rm{\varphi }} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{{0,95}}{{\sqrt {0,{{95}^2} + {{(1,455 - 1)}^2}} }} = 0,9\). Đáp án. 0,9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP