Câu hỏi:

06/08/2024 187 Lưu

Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là một điểm nút, B là vị trí cân bằng của một điểm bụng gần A nhất với AB = 15 cm, M là một điểm trên dây có vị trí cân bằng cách A một khoảng 10 cm. Biết trong một chu kỳ sóng, khoảng thời gian mà tốc độ dao động của phần tử B không lớn hơn vận tốc cực đại của phần tử M là 0,2 s. Tốc độ truyền sóng trên dây là 

A. 1 m/s. 
B. 2,4 m/s. 
C. 1,8 m/s. 
D. 1,2 m/s.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là một điểm nút, B là vị trí cân bằng của một điểm bụng gần A nhất với AB = 15 cm (ảnh 1)

Bước sóng: \(\frac{{\rm{\lambda }}}{4} = {\rm{AB}} \Rightarrow {\rm{\lambda }} = 4.15 = 60\;\,{\rm{cm}}{\rm{.}}\)

Biên độ của M là: \({{\rm{A}}_{\rm{M}}} = \left| {2{\rm{a}}{\rm{.}}\cos \left( {2{\rm{\pi }}.\frac{{10}}{{60}}} \right)} \right| = {\rm{a}}\)

Vận tốc cực đại của phần tử M và N là \(\left\{ {\begin{array}{*{20}{l}}{{v_{M\max }} = {\rm{\omega }}a}\\{{v_{B\max }} = {\rm{\omega }}.2a}\end{array}} \right.\).

Áp dụng giản đồ vecto quay:

Ta có \({\rm{\alpha }} = {\mathop{\rm arcos}\nolimits} \frac{{{\rm{a\omega }}}}{{2a{\rm{\omega }}}} = \frac{{\rm{\pi }}}{3}\).

Thời gian trong 1 chu kì mà tốc độ dao động của phần tử B không lớn hơn vận tớc cực đại của phần tử M là: \(\Delta {\rm{t}} = \frac{{\rm{T}}}{{2{\rm{\pi }}}}.4\left( {\frac{{\rm{\pi }}}{2} - \alpha } \right) = \frac{{\rm{T}}}{{2{\rm{\pi }}}}.4.\left( {\frac{{\rm{\pi }}}{2} - \frac{{\rm{\pi }}}{3}} \right) = \frac{{\rm{T}}}{3} = 0,2\;{\rm{s}} \Rightarrow {\rm{T}} = 0,6\;{\rm{s}}\).

Tốc độ truyền sóng trên dây là: \({\rm{v}} = \frac{{\rm{\lambda }}}{{\rm{T}}} = \frac{{60}}{{0,6}} = 100\;{\rm{cm}}/{\rm{s}} = 1\;{\rm{m}}/{\rm{s}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. nước ngọt rất cần thiết cho phát triển nuôi trồng thủy sản.
B. đất bị nhiễm phèn, nhiễm mặn, cần nước ngọt để cải tạo. 
C. thiếu nước ngọt cho đời sống sinh hoạt và sản xuất. 
D. thiếu nước ngọt cho sản xuất nông nghiệp, công nghiệp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP