Câu hỏi:
08/08/2024 313Một loài thực vật, xét 2 cặp gen phân li độc lập, alen A quy định thân cao trội hoàn toàn so với alen a quy định thân thấp, alen B quy định khả năng chịu mặn trội hoàn toàn so với alen b quy định không có khả năng chịu mặn; cây có kiểu gen bb không có khả năng sống khi trồng trong đất ngập mặn và hạt có kiểu gen bb không nảy mầm trong đất ngập mặn. Để nghiên cứu và ứng dụng trồng rừng phòng hộ ven biển, người ta cho 2 cây (P) dị hợp 2 cặp gen giao phấn với nhau để tạo ra các cây F1 ở vườn ươm không nhiễm mặn; sau đó chọn tất cả các cây thân cao F1 đem trồng ở vùng đất ngập mặn ven biển. Các cây này giao phấn ngẫu nhiên tạo ra F2. Theo thuyết, trong tổng số cây F2 ở vùng đất này, số cây thân cao, chịu mặn chiếm tỉ lệ bao nhiêu?
Đáp án: ……….
Quảng cáo
Trả lời:
Ta có: \({\rm{P}}:{\rm{AaBb}} \times {\rm{AaBb}} \to {{\rm{F}}_1}:(1{\rm{AA}}:2{\rm{Aa}}:1{\rm{aa}}) \times (1{\rm{BB}}:2{\rm{Bb}}:1{\rm{bb}})\).
Chọn các cây thân cao A- đem trồng ở đất ngập mặn (chỉ có các cây B- là sống được) thì tỉ lệ kiểu gen các cây sống được là: (1AA : 2Aa)×(1BB : 2Bb).
Cho các cây F1 sống được giao phấn ngẫu nhiên: (2A : 1a)×(2B : 1b)
→ Tỉ lệ kiểu gen các hạt \({{\rm{F}}_2}\) thu được là: (4AA : 4Aa : 1aa)(4BB : 4Bb : 1bb).
→ Tỉ lệ kiểu gen các cây \({{\rm{F}}_2}\) sống được ở vùng đất mặn này là: (4AA : 4Aa : 1aa)(1BB : 1Bb).
→ Trong số cây \({{\rm{F}}_2}\) sống ở vùng đất này thì cây thân cao chịu mặn A-B- chiếm tỉ lệ là \(\frac{8}{9}.\)
Đáp án: \(\frac{8}{9}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {{n_P}} = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}} = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)
\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)
\( \Rightarrow \overrightarrow {MA} = (2; - 1;2) \Rightarrow MA = 3\)
Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)
\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)
\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)
Lời giải
Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)
Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)
Diện tích hình phẳng cần tìm là:
\[S = \pi \cdot {2^2} - \pi \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}} - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận