Lợi nhuận của 20 nhà đầu tư quy mô ở hai lĩnh vực A và B được cho như sau (lợi nhuận âm được hiểu là lỗ vốn):
Hỏi đầu tư vào lĩnh vực nào “rủi ro” hơn?
Lợi nhuận của 20 nhà đầu tư quy mô ở hai lĩnh vực A và B được cho như sau (lợi nhuận âm được hiểu là lỗ vốn):

Hỏi đầu tư vào lĩnh vực nào “rủi ro” hơn?
Quảng cáo
Trả lời:

Chọn giá trị đại diện cho bảng số liệu, ta có bảng sau:

Lợi nhuận trung bình của các nhà đầu tư vào lĩnh vực A là:
\(\overline x = \frac{1}{{20}}\left[ {2.\left( { - 0,75} \right) + 3.\left( { - 0,25} \right) + 7.0,25 + 5.0,75 + 3.1,25} \right]\) = 0,35.
Lợi nhuận trung bình của các nhà đầu tư vào lĩnh vực B là:
\(\overline x = \frac{1}{{20}}\left[ {1.\left( { - 0,75} \right) + 3.\left( { - 0,25} \right) + 10.0,25 + 4.0,75 + 2.1,25} \right]\) = 0,325.
Độ lệch chuẩn của lợi nhuận khi đầu tư vào lĩnh vực A là:
sA = \(\sqrt {\frac{1}{{20}}\left[ {2.{{\left( { - 0,75} \right)}^2} + 3.{{\left( { - 0,25} \right)}^2} + 7.0,{{25}^2} + 5.0,{{75}^2} + 3.1,{{25}^2}} \right] - 0,{{35}^2}} \) ≈ 0,58.
Độ lệch chuẩn của lợi nhuận khi đầu tư vào lĩnh vực B là:
sB = \(\sqrt {\frac{1}{{20}}\left[ {1.{{\left( { - 0,75} \right)}^2} + 3.{{\left( { - 0,25} \right)}^2} + 10.0,{{25}^2} + 4.0,{{75}^2} + 2.1,{{25}^2}} \right] - 0,{{35}^2}} \)≈ 0,48.
Do sA > sB nên đầu tư vào lĩnh vực A rủi ro hơn lĩnh vực B.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn giá trị đại diện cho mỗi nhóm dố liệu ta có mẫu số liệu sau:

Cỡ mẫu là: 5 + 12 + 15 + 3 = 35.
Số trung bình là:
\(\overrightarrow x \) = \(\frac{1}{{35}}\)(5.6,75 + 12.7,25 + 15.7,75 + 3.8,35) ≈ 7,48.
Độ lệch chuẩn là:
s = \(\sqrt {\frac{1}{{35}}\left( {5.6,{{75}^2} + ... + 3.8,{{25}^2}} \right) - 7,{{48}^2}} \) ≈ 0,39.
Lời giải
a) Tổng chiều cao 20 cây xoan giống đó là:
15 + 19 + 24 + 31 + 27 + 23 + 18 + 19 + 25 + 29 + 23 + 33 + 34 + 27 + 31 + 24 + 27
+ 21 + 29 + 30 = 509.
Chiều cao trung bình của 20 cây xoan giống là: \(\frac{{509}}{{20}}\) = 25,45.
Ta có: Tổng bình phương của 20 giá trị số liệu trong bảng là:
152 + 192 + 242 + 312 + 272 + 232 + 182 + 192 + 252 + 292 + 232 + 332 + 342 + 272 + 312
+ 242 + 272 + 212 + 292 + 302 = 13 483.
Lúc này, độ lệch chuẩn của mẫu số liệu gốc là:
Sg = \(\sqrt {\frac{1}{{20}}.13483 - 25,{{45}^2}} \) ≈ 5,14.
b) Ta có bảng số liệu ghép nhóm như sau:

Ta có bảng giá trị đại diện là:

Số trung bình là:
\(\overline x \) = \(\frac{{4.17,5 + 5.22,5 + 6.27,5 + 5.32,5}}{{20}}\) = 25,5.
Độ lệch chuẩn là:
s = \(\sqrt {\frac{1}{{20}}\left( {4.17,{5^2} + 5.22,{5^2} + 6.27,{5^2} + 5.32,{5^2}} \right) - 25,{5^2}} \) ≈ 5,34.
c) Từ số liệu tính được phần a, b ta nên dùng giá trị sg để đo mức độ phân tán về chiều cao của 20 cây xoan giống.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.