Câu hỏi:

21/08/2024 641

Biểu đồ tần số tương đối ghép nhóm sau cho biết phân bố về khối lượng của 200 bao xi măng trước khi xuất xưởng:

Biểu đồ tần số tương đối ghép nhóm sau cho biết phân bố về khối lượng của 200 bao xi măng trước khi xuất xưởng:    (ảnh 1)

a) Lập bảng tần số ghép nhóm cho dữ liệu về khối lượng của 200 bao xi măng trên.

b) Tính khoảng tứ phân vị cho mẫu số liệu ghép nhóm thu được ở câu a.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tần số tương ứng của các nhóm là:

200.5% = 10;

200.10% = 20;

200.35% = 70;

200.40% = 80;

200.10% = 20.

Ta có bảng tần số ghép nhóm cho dữ liệu về khối lượng của 200 bao xi măng là:

Biểu đồ tần số tương đối ghép nhóm sau cho biết phân bố về khối lượng của 200 bao xi măng trước khi xuất xưởng:    (ảnh 2)

b) Cỡ mẫu là 200.

Do \(\frac{n}{4} = \frac{{200}}{4}\) = 50 nên nhóm chứa tứ phân vị thứ nhất là [49,5; 50).

Ta có: Q1 = 49,5 + \(\frac{{50 - \left( {10 + 20} \right)}}{{70}}.0,5\) ≈ 49,6429.

Do \(\frac{{3n}}{4} = \frac{{3.200}}{4}\) = 150 nên nhóm chứa tứ phân vị thứ ba là [50; 50,5).

Ta có: Q3 = 50 + \(\frac{{150 - \left( {10 + 20 + 70} \right)}}{{80}}.0,5\) = 50,3125.

Do đó, khoảng tứ phân vị là ∆Q ≈ 50,3125 – 49,6429 = 0,6696.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn giá trị đại diện cho các nhóm số liệu ta có bảng thống kê sau:

Một người đầu tư cùng một số tiền vào hai lĩnh vực A và B. Nhà đầu tư này ghi lại số tiền thu được hàng tháng trong hai năm theo mỗi lĩnh vực cho  (ảnh 2)

Cỡ mẫu của lĩnh vực A là: nA = 2 + 5 + 10 + 5 + 2 = 24.

Cỡ mẫu của lĩnh vực B là: nB = 1 + 8 + 7 + 6 + 2 = 24.

Số tiền trung bình thu được mỗi tháng từ lĩnh vực A là:

\({\overline x _A}\) = \(\frac{1}{{24}}\)(2.7,5 + 5.22,5 + 10.17,5 + 5.22,5 + 2.27,5) = 17,5.

Số tiền trung bình thu được mỗi tháng từ lĩnh vực B là:

\({\overline x _B}\) = \(\frac{1}{{24}}\)(1.7,5 + 8.22,5 + 7.17,5 + 6.22,5 + 2.27,5) = 17,5.

Độ lệch chuẩn của số tiền thu được trong các tháng theo lĩnh vực A là:

sA = \(\sqrt {\frac{1}{{24}}\left( {2.7,{5^2} + 5.12,{5^2} + 10.17,{5^2} + 5.22,{5^2} + 2.27,{5^2}} \right) - 17,{5^2}} \) ≈ 5,2.

Độ lệch chuẩn của số tiền thu được trong các tháng theo lĩnh vực A là:

sB =  \(\sqrt {\frac{1}{{24}}\left( {1.7,{5^2} + 8.12,{5^2} + 7.17,{5^2} + 6.22,{5^2} + 2.27,{5^2}} \right) - 17,{5^2}} \) ≈ 5,2.

Do các độ lệch chuẩn sA = sB ≈ 5,2 nên mức độ ổn định của hai phương án đầu tư là như nhau.

Lời giải

a) Chọn giá trị đại diện cho các nhóm số liệu ta có bảng thống kê sau:

Bảng thống kê sau cho biết dân số thế giới theo độ tuổi (đơn vị tính là triệu người) trong hai năm 2000 và 2020:   a) Chọn 75 là giá trị đại diện cho nhóm (ảnh 2)

Ước lượng tuổi trung bình của dân số thế giới năm 2000 là:

\({\overline x _{2000}}\) = \(\frac{{2,5.619,57 + 10.1240 + 20.1090 + 45.2780 + 75.423,26}}{{619,57 + 1240 + 1090 + 2780 + 423,26}}\) ≈ 31,3016.

Ước lượng tuổi trung bình của dân số thế giới năm 2020 là:

\({\overline x _{2020}}\) = \(\frac{{2,5.679,15 + 10.1330 + 20.1220 + 45.3870 + 75.739,48}}{{679,15 + 1330 + 1220 + 3870 + 739,48}}\) ≈ 34,3184.

b) Với mẫu số liệu về tuổi của dân số thế giới năm 2000:

Cỡ mẫu là: 619,57 + 1240 + 1090 + 2780 + 423,26 = 6152,83.

Do \(\frac{n}{4} = \frac{{6152,83}}{4}\)= 1538,2075 nên nhóm chứa tứ phân vị thứ nhất là [5; 15). Ta có:

Q1 = 5 +  \(\frac{{1538,2075 - 619,57}}{{1240}}.10\) ≈ 12,41.

Do \(\frac{{3n}}{4} = \frac{{3.6152,83}}{4}\) = 4614,6225 nên nhóm chứa tứ phân vị thứ ba là [25; 65). Ta có:

Q3 = 25 + \(\frac{{4614,6225 - (619,57 + 1240 + 1090)}}{{2780}}.40\) ≈ 48,96.

Như vậy, khoảng tứ phân vị của mẫu số liệu về tuổi dân số thế giới năm 2000 là:

∆Q2000 ≈ 48,96 – 12,41 = 36,55.

Với mẫu số liệu về tuổi của dân số thế giới năm 2020:

Cỡ mẫu là: 679,15 + 1330 + 1220 + 3870 + 739,48 = 7838,63.

Do \(\frac{n}{4} = \frac{{7838,63}}{4}\) = 1959,6575 nên nhóm chứa tứ phân vị thứ nhất là [5; 15). Ta có:

Q1 = 5 +  \(\frac{{1959,6575 - 679,15}}{{1330}}.10\) ≈ 14,63.

Do \(\frac{{3n}}{4} = \frac{{3.1959,6575}}{4}\) = 5878,9725 nên nhóm chứa tứ phân vị thứ ba là [25; 65). Ta có:

Q3 = 25 + \(\frac{{5878,9725 - (679,15 + 1330 + 1220)}}{{3870}}.40\) ≈ 52,39.

Như vậy, khoảng tứ phân vị của mẫu số liệu về tuổi dân số thế giới năm 2020 là:

∆Q2020 ≈ 52,39 – 14,63 = 37,76.

Nhận xét: Dân số thế giới năm 2020 già hơn và có độ tuổi phân tán hơn so với dân số thế giới năm 2000.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP