Câu hỏi:
21/08/2024 564Bảng thống kê sau cho biết dân số thế giới theo độ tuổi (đơn vị tính là triệu người) trong hai năm 2000 và 2020:
a) Chọn 75 là giá trị đại diện cho nhóm 65 tuổi trở lên. Hãy ước lượng tuổi trung bình của dân số thế giới trong hai năm 2000 và 2020.
b) Tìm khoảng tứ phân vị cho tuổi của dân số thế giới trong hai năm 2000 và 2020. Nêu nhận xét về sự thay đổi cấu trúc dân số theo độ tuổi.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Chọn giá trị đại diện cho các nhóm số liệu ta có bảng thống kê sau:
Ước lượng tuổi trung bình của dân số thế giới năm 2000 là:
\({\overline x _{2000}}\) = \(\frac{{2,5.619,57 + 10.1240 + 20.1090 + 45.2780 + 75.423,26}}{{619,57 + 1240 + 1090 + 2780 + 423,26}}\) ≈ 31,3016.
Ước lượng tuổi trung bình của dân số thế giới năm 2020 là:
\({\overline x _{2020}}\) = \(\frac{{2,5.679,15 + 10.1330 + 20.1220 + 45.3870 + 75.739,48}}{{679,15 + 1330 + 1220 + 3870 + 739,48}}\) ≈ 34,3184.
b) Với mẫu số liệu về tuổi của dân số thế giới năm 2000:
Cỡ mẫu là: 619,57 + 1240 + 1090 + 2780 + 423,26 = 6152,83.
Do \(\frac{n}{4} = \frac{{6152,83}}{4}\)= 1538,2075 nên nhóm chứa tứ phân vị thứ nhất là [5; 15). Ta có:
Q1 = 5 + \(\frac{{1538,2075 - 619,57}}{{1240}}.10\) ≈ 12,41.
Do \(\frac{{3n}}{4} = \frac{{3.6152,83}}{4}\) = 4614,6225 nên nhóm chứa tứ phân vị thứ ba là [25; 65). Ta có:
Q3 = 25 + \(\frac{{4614,6225 - (619,57 + 1240 + 1090)}}{{2780}}.40\) ≈ 48,96.
Như vậy, khoảng tứ phân vị của mẫu số liệu về tuổi dân số thế giới năm 2000 là:
∆Q2000 ≈ 48,96 – 12,41 = 36,55.
Với mẫu số liệu về tuổi của dân số thế giới năm 2020:
Cỡ mẫu là: 679,15 + 1330 + 1220 + 3870 + 739,48 = 7838,63.
Do \(\frac{n}{4} = \frac{{7838,63}}{4}\) = 1959,6575 nên nhóm chứa tứ phân vị thứ nhất là [5; 15). Ta có:
Q1 = 5 + \(\frac{{1959,6575 - 679,15}}{{1330}}.10\) ≈ 14,63.
Do \(\frac{{3n}}{4} = \frac{{3.1959,6575}}{4}\) = 5878,9725 nên nhóm chứa tứ phân vị thứ ba là [25; 65). Ta có:
Q3 = 25 + \(\frac{{5878,9725 - (679,15 + 1330 + 1220)}}{{3870}}.40\) ≈ 52,39.
Như vậy, khoảng tứ phân vị của mẫu số liệu về tuổi dân số thế giới năm 2020 là:
∆Q2020 ≈ 52,39 – 14,63 = 37,76.
Nhận xét: Dân số thế giới năm 2020 già hơn và có độ tuổi phân tán hơn so với dân số thế giới năm 2000.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người đầu tư cùng một số tiền vào hai lĩnh vực A và B. Nhà đầu tư này ghi lại số tiền thu được hàng tháng trong hai năm theo mỗi lĩnh vực cho kết quả như sau:
Tính độ lệch chuẩn của hai mẫu số liệu ghép nhóm và nhận xét về mức độ ổn định của số tiền thu được hàng tháng khi đầu tư vào hai lĩnh vực trên.
Câu 2:
Cho mẫu số liệu ghép nhóm về tuổi thọ của 20 thiết bị điện tử như sau:
Khoảng tứ phân vị (làm tròn đến chữ số thập phân thứ hai) của mẫu số liệu ghép nhóm trên là
A. 2,68.
B. 4,75.
C. 6,00.
D. 7,43.
Câu 3:
Cho mẫu số liệu ghép nhóm về tuổi thọ của 20 thiết bị điện tử như sau:
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
A. 2.
B. 6.
C. 8.
D. 10.
Câu 4:
Biểu đồ tần số tương đối ghép nhóm sau cho biết phân bố về khối lượng của 200 bao xi măng trước khi xuất xưởng:
a) Lập bảng tần số ghép nhóm cho dữ liệu về khối lượng của 200 bao xi măng trên.
b) Tính khoảng tứ phân vị cho mẫu số liệu ghép nhóm thu được ở câu a.
Câu 5:
Thống kê cân nặng của một số trẻ sơ sinh tại một bệnh viện cho kết quả như sau:
Tìm khoảng biến thiên và khoảng tứ phân vị cho mẫu số liệu ghép nhóm trên. Các giá trị này cho biết điều gì?
Câu 6:
Cho mẫu số liệu ghép nhóm về tuổi thọ của 20 thiết bị điện tử như sau:
Nếu thay các nhóm tương ứng bằng [3; 5),
[5; 7), [7; 9), [9; 11) thì khoảng tứ phân vị sẽ thay đổi như thế nào?
A. Tăng.
B. Giảm.
C. Không thay đổi.
về câu hỏi!