Câu hỏi:

25/08/2024 358 Lưu

Quan sát các đa giác ở Hình 23 và cho biết hình nào là đa giác đều.

Quan sát các đa giác ở Hình 23 và cho biết hình nào là đa giác đều. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Hình A không phải đa giác lồi nên cũng không phải đa giác đều.

Hình B có các cạnh của đa giác không bằng nhau nên không phải đa giác đều.

Hình C có các góc của đa giác không bằng nhau nên không phải đa giác đều.

Hình D là đa giác lồi có các cạnh bằng nhau và các góc bằng nhau nên là đa giác lồi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều. (ảnh 1)

Vì ABC là tam giác đều và CF là đường cao nên CF cũng là đường phân giác của \(\widehat {ACB}.\) Suy ra \(\widehat {{C_1}} = \frac{1}{2}\widehat {ACB} = \frac{1}{2} \cdot 60^\circ = 30^\circ .\)

Tam giác HDC vuông tại D có

\[\widehat {{C_1}} + \widehat {{H_1}} = 90^\circ ,\] suy ra \[\widehat {{H_1}} = 90^\circ - \widehat {{C_1}} = 90^\circ - 30^\circ = 60^\circ ;\]

M là trung điểm của HC hay DM là đường trung tuyến ứng với cạnh huyền nên nên MD = MH = MC (cùng bằng một nửa cạnh huyền HC).

Do đó, tam giác DHM là tam giác đều.

Tương tự, ta cũng chứng minh được các tam giác HEM, HEI, HIF, HFK, HKD là các tam giác đều.

Từ đó suy ra lục giác DKFIEM có các góc đều bằng 2.60° = 120° và các cạnh đều bằng nhau, do đó lục giác DKFIEM là lục giác đều.

Lời giải

Đáp án đúng là: D
Trên mặt phẳng toạ độ Oxy cho A(–2; –2). Phép quay thuận chiều 90° tâm O biến điểm A thành điểm I. Khi đó tọa độ của điểm I là: A. (–2; 0). B. (0; –2). C. (2; –2). D. (–2; 2). (ảnh 1)

Gọi H là hình chiếu của A trên Ox. Ta có A(–2; –2) nên OH = AH = |–2| = 2.

Do đó ∆AOH vuông cân tại H, nên \(\widehat {AOH} = 45^\circ .\)

Xét ∆AOH vuông tại H, ta có: OA2 = OH2 + AH2 (định lí Pythagore).

Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = \sqrt 8 = 2\sqrt 2 .\)

Gọi I là điểm đối xứng với A qua Ox, do đó I(–2; 2). Ta cũng chứng minh được \(\widehat {HOI} = 45^\circ \) và \(OI = 2\sqrt 2 .\)

Như vậy, Phép quay thuận chiều 90° tâm O biến điểm A(–2; –2) thành điểm I(–2; 2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP