Câu hỏi:
25/08/2024 86Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tổng số đo tất cả các góc của ngũ giác ABCDE bằng tổng số đo các góc của tam giác ABE và tứ giác BCDE, và bằng: 180° + 360° = 540°.
Do ABCDE là ngũ giác đều suy ra các góc của nó đều bằng nhau và bằng \(\frac{{540^\circ }}{5} = 108^\circ .\)
Do PDE là tam giác đều nên PE = PD = DE và \[\widehat {PDE} = \widehat {PED} = \widehat {EPD} = 60^\circ .\]
Do đó: \(\widehat {AEP} = \widehat {AED} + \widehat {DEP} = 108^\circ + 60^\circ = 168^\circ ;\)
\(\widehat {CDP} = \widehat {CDE} + \widehat {EDP} = 108^\circ + 60^\circ = 168^\circ .\)
Do ABCDE là ngũ giác đều suy ra DE = EA = DC.
Do đó PE = PD = DE = EA = DC nên các tam giác EAP, DCP là các tam giác cân lần lượt tại các đỉnh E và D.
Suy ra: \(\widehat {EPA} = \frac{{180^\circ - \widehat {AEP}}}{2} = \frac{{180^\circ - 168^\circ }}{2} = 6^\circ ;\)
\(\widehat {DPC} = \frac{{180^\circ - \widehat {CDP}}}{2} = \frac{{180^\circ - 168^\circ }}{2} = 6^\circ .\)
Vì vậy ta có \(\widehat {APC} = \widehat {EPD} - \widehat {EPA} - \widehat {DPC} = 60^\circ - 6^\circ - 6^\circ = 48^\circ .\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.
Câu 2:
Cho hình vuông ABCD và O là giao điểm của AC và BD. Gọi M là trung điểm của AB, N là trung điểm của AO (Hình 25). Phép quay ngược chiều 90° tâm O biến các điểm N, M lần lượt thành các điểm N’, M’.
a) Chứng minh tam giác BN'M' là tam giác vuông cân.
b) Tính tỉ số diện tích tam giác ANM và diện tích tam giác CN'M'.
c) Phát biểu “Phép quay thuận chiều 90° tâm N biến điểm O thành điểm M, biến điểm D thành điểm B” là đúng hay sai? Vì sao?
Câu 3:
Tổng số đo tất cả các góc của ngũ giác ABCDE là:
A. 560°.
B. 540°.
C. 520°.
D. 500°.
Câu 4:
Cho lục giác đều ABCDEF với tâm O thoả mãn phép quay thuận chiều 60° tâm O biến các điểm A, B, C, D, E, F lần lượt thành các điểm B, C, D, E, F, A. Các điểm M, N lần lượt là trung điểm của EF, BD.
a) Tìm α (0 < α < 180), biết phép quay ngược chiều α° tâm O biến các điểm D, C lần lượt thành các điểm B, A.
b) Chứng minh phép quay thuận chiều 60° tâm A biến các điểm O, N lần lượt thành các điểm F, M.
Câu 5:
Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao?
Câu 6:
Quan sát các đa giác ở Hình 23 và cho biết hình nào là đa giác đều.
về câu hỏi!