Câu hỏi:
25/08/2024 59Khi quay tam giác OHA vuông cân ở H một vòng xung quanh đường thẳng cố định OH, ta được một hình nón như ở Hình 14. Hỏi diện tích xung quanh của hình nón đó là bao nhiêu centimét vuông (làm tròn kết quả đến hàng đơn vị)? Biết diện tích tam giác OHA là 4 cm2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có diện tích của tam giác OHA vuông tại H là \[\frac{1}{2}OH \cdot HA\] (cm2).
Theo bài, tam giác OHA vuông cân tại H có diện tích bằng 4 cm2 nên \[\frac{1}{2}OH \cdot HA = 4\]
Suy ra OH.HA = 8
Do đó \[OH = HA = 2\sqrt 2 \] cm (do ∆OHA vuông cân tại H).
Xét ∆OHA vuông tại H, theo định lí Pythagore, ta có:
OA2 = OH2 + HA2
Suy ra \[OA = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {2\sqrt 2 } \right)}^2}} = \sqrt {8 + 8} = \sqrt {16} = 4\] (cm).
Vậy diện tích xung quanh của hình nón đó là:
\(\pi \cdot HA \cdot OA = \pi \cdot 2\sqrt 2 \cdot 4 = 8\sqrt 2 \pi \approx 8\sqrt 2 \cdot 3,14 \approx 36\;\) (cm2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bác Hà thuê xe cải tiến (Hình 18a) chuyển một đống cát có dạng hình nón với chu vi đáy 9,42 m và chiều cao là 1,2 m (Hình 18b) để xây tường nhà. Biết thùng chứa của xe có dạng hình hộp chữ nhật với kích thước dài 1,57 m, rộng 0,8 m và cao 0,4 m. Trong mỗi chuyến xe, bác Hà chở lượng cát ít hơn thể tích thực của xe là 5%. Hỏi bác Hà cần phải chuẩn bị ít nhất bao nhiêu tiền để chuyển hết đống cát trên, biết rằng giá vận chuyển của một chuyến xe là 90 000 đồng?
Câu 2:
Một hình nón có chiều cao là 8 cm và đường kính đường tròn đáy bằng 12 cm. Tính diện tích xung quanh của hình nón đó.
Câu 3:
Một hình nón có đường sinh dài 15 cm và diện tích xung quanh là 135π cm2.
a) Tính diện tích toàn phần của hình nón đó.
b) Tính chiều cao của hình nón đó.
Câu 5:
Trong các phát biểu sau, phát biểu nào sai?
a) Nếu bán kính đáy của một hình nón tăng lên hai lần và giữ nguyên chiều cao thì thể tích của hình nón đó sẽ tăng lên hai lần.
b) Nếu chiều cao của một hình nón tăng lên hai lần và giữ nguyên bán kính đáy thì thể tích của hình nón đó sẽ tăng lên hai lần.
c) Nếu bán kính đáy và chiều cao của một hình nón cùng tăng lên hai lần thì thể tích của hình nón đó sẽ tăng lên bốn lần.
Câu 6:
Cơ sở sản xuất A làm 1 500 chiếc kem giống nhau như Hình 17 để cung cấp cho các cửa hàng bán trong một ngày lễ. Cốc đựng kem có dạng hình nón với bề dày không đáng kể, chiều cao bằng 10 cm, đường kính miệng cốc bằng 6 cm. Kem được đổ đầy vào cốc và dư thêm lên phía trên miệng cốc một lượng bằng 10% lượng kem ở trong cốc. Để làm được 1 500 chiếc kem đó thì cơ sở sản xuất A cần chuẩn bị một lượng kem bằng bao nhiêu centimét khối (làm tròn kết quả đến hàng đơn vị)?
Câu 7:
Cho hình chóp tam giác đều ABCD có các cạnh đáy và cạnh bên đều bằng a. Hình nón (N) có đỉnh A và đường tròn đáy tâm O là đường tròn ngoại tiếp tam giác BCD (Hình 15). Tính diện tích toàn phần của hình nón (N) đó theo a.
về câu hỏi!