Câu hỏi:

28/08/2024 2,298

Cho đường tròn tâm O, đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn thẳng AB lấy điểm E sao cho BE = AC. Tia AC và tia BD cắt nhau tại M. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc \(\widehat {BAC}\) cắt EH tại K và cắt đường tròn (O) tại D. Tia CK cắt AB tại I và cắt đường tròn (O) tại F.

a) Chứng minh EH // BC.

b) Tính số đo của \(\widehat {AMB}.\)

c) Chứng minh \(\widehat {AEK} = \widehat {AFK}.\)

d) Chứng minh I là trung điểm của đoạn thẳng AE.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn tâm O, đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn thẳng AB lấy điểm E sao cho BE = AC. Tia AC và tia BD cắt nhau tại M. Vẽ EH vuông góc với AC tại H (ảnh 1)

a) Ta có \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O) đường kính AB), suy ra BC AC.

Mà EH AC (giả thiết), suy ra EH // BC.

b) Vì C là điểm chính giữa của cung AB và AB là đường kính của đường tròn (O), suy ra  

Vì AD là tia phân giác của \(\widehat {BAC}\) (giả thiết) nên \(\widehat {CAD} = \widehat {BAD} = \frac{1}{2}\widehat {CAB},\) suy ra

Xét đường tròn (O) có:

\(\widehat {CAB}\) là góc nội tiếp chắn cung CB nên

\(\widehat {CBA}\) là góc nội tiếp chắn cung CA nên

\(\widehat {CBD}\) là góc nội tiếp chắn cung CD nên

Suy ra \(\widehat {MAB} = 45^\circ ;\) \(\widehat {MBA} = \widehat {MBC} + \widehat {CBA} = 22,5^\circ + 45^\circ = 67,5^\circ .\)

Xét ∆MAB có: \[\widehat {AMB} + \widehat {MAB} + \widehat {MBA} = 180^\circ \]

Suy ra \[\widehat {AMB} = 180^\circ - \widehat {MAB} - \widehat {MBA} = 180^\circ - 45^\circ - 67,5^\circ = 67,5^\circ .\]

c) Vì EH // BC nên \(\widehat {AEK} = \widehat {ABC}\) (hai góc đồng vị).

\(\widehat {AFK} = \widehat {AFC} = \widehat {ABC}\) (góc nội tiếp cùng chắn cung AC của đường tròn (O)).

Suy ra \(\widehat {AEK} = \widehat {AFK}.\)

d) Tam giác AIC có AK là tia phân giác của \(\widehat {CAI},\) suy ra \(\frac{{AI}}{{AC}} = \frac{{KI}}{{KC}}.\)

Tam giác CIB có EK // CB, suy ra \(\frac{{IE}}{{BE}} = \frac{{KI}}{{KC}}\) (định lí Thalès)

Từ (1) và (2) suy ra \(\frac{{AI}}{{AC}} = \frac{{IE}}{{BE}}.\)

Mà AC = BE (giả thiết) nên  AI = IE.

Vậy I là trung điểm của đoạn thẳng AE.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC (AB < AC) có hai đường cao BD và CE.

a) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn.

b) Vẽ đường tròn (B; BD). Chứng minh AC là tiếp tuyến của đường tròn (B; BD).

c) Đường tròn (B; BD) cắt CE tại K(K nằm giữa E và C). Qua D vẽ đường thẳng vuông góc với BC tại H và cắt đường thẳng AB tại M. Chứng minh \(\widehat {BMH} = \widehat {BKH}.\)

Xem đáp án » 28/08/2024 7,226

Câu 2:

Cho tam giác ABC có (O) là đường tròn ngoại tiếp. Vẽ đường cao AH của tam giác ABC và đường kính AD của đường tròn (O). Biết AB = 8 cm; AC = 15 cm và AH = 5 cm.

a) Chứng minh ∆AHB ᔕ ∆ACD.

b) Tính độ dài bán kính của đường tròn.

Xem đáp án » 28/08/2024 2,205

Câu 3:

Cho hình vuông ABCD có O là giao điểm của hai đường chéo. Phép quay tâm O biến hình vuông ABCD thành chính nó có góc quay là

A. 45°.

B. 90°.

C. 135°.

D. 210°.

Xem đáp án » 28/08/2024 933

Câu 4:

Một công viên hình tam giác được bao quanh bởi ba con đường ML, LN, NM với kích thước (tính theo mét) được ghi trên bản vẽ trong Hình 7. Người ta muốn dựng một trụ đèn tại một điểm cách đều ba con đường. Xác định vị trí điểm cần tìm và tính khoảng cách từ điểm đó đến ba con đường.

Xem đáp án » 28/08/2024 812

Câu 5:

Cho tam giác ABC ngoại tiếp đường tròn (I; r); D, E, F lần lượt là các tiếp điểm của cạnh AB, BC, AC với đường tròn (I; r) (Hình 4).

Cho tam giác ABC ngoại tiếp đường tròn (I; r); D, E, F lần lượt là các tiếp điểm của cạnh AB, BC, AC với đường tròn (I; r) (Hình 4).  a) Ba đường trung trực của tam giác ABC cắt nhau tại I.  b) AD = AF  c) BD + CF = BC.  d) IE = r. (ảnh 1)

a) Ba đường trung trực của tam giác ABC cắt nhau tại I.

b) AD = AF

c) BD + CF = BC.

d) IE = r.

Xem đáp án » 28/08/2024 775

Câu 6:

Gọi A, B, C là ba đỉnh liên tiếp của một đa giác đều có 10 cạnh. Số đo của \(\widehat {ABC}\) là

A. 144°.

B. 36°.

C. 72°.

D. 152°.

Xem đáp án » 28/08/2024 591