Câu hỏi:
19/09/2024 5,809
Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi A là biến cố “Viên đạn thứ nhất trúng bia”, B là biến cố “Viên đạn thứ hai trúng bia”.
a) Tính P(A | B) và P(B | A).
b) Hai biến cố A và B có độc lập không, tại sao?
Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi A là biến cố “Viên đạn thứ nhất trúng bia”, B là biến cố “Viên đạn thứ hai trúng bia”.
a) Tính P(A | B) và P(B | A).
b) Hai biến cố A và B có độc lập không, tại sao?
Quảng cáo
Trả lời:
a) Xác suất trúng bia của viên thứ nhất, biết rằng viên thứ hai trúng bia là:
P(A | B) = \[\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,6}}{{0,8}} = 0,75\].
Xác suất trúng bia của viên thứ hai, biết rằng viên thứ nhất trúng bia là:
P(B | A) = \[\frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{0,6}}{{0,7}} = \frac{6}{7} \approx 0,857.\]
b) Xác suất của biến cố A giao B là P(A ∩ B) = 0,6.
Mặt khác, P(A)P(B) = 0,7.0,8 = 0,56.
Do P(A ∩ B) ≠ P(A)P(B) nên hai biến cố A và B không độc lập.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có sơ đồ hình cây sau:

Gọi A là biến cố “2 viên bi ở hộp thứ hai lấy ra có cùng màu” và B là biến cố “3 viên bi lấy ra từ hộp thứ nhất có cùng màu”.
Từ biểu đồ hình cây, ta có xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu là P(A) = \[\frac{1}{2}\left( {\frac{1}{7} + \frac{2}{7}} \right) + \frac{1}{2}\left( {\frac{1}{{21}} + \frac{{10}}{{21}}} \right) = \frac{{10}}{{21}}\]≈ 0,476.
b) xác suất của biến cố 3 viên bi lấy ra từ hộp thứ nhất có cùng màu là P(B) = \[\frac{1}{2}\].
Xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu, biết rằng 3 viên bi lấy ra ở hộp thứ nhất có cùng màu là P(A | B) = \[\frac{1}{7} + \frac{2}{7} = \frac{3}{7}\].
Theo công thức Bayes, xác suất 3 viên bi lấy ra ở hộp thứ nhất có cùng màu, biết rằng 2 viên bi lấy ra ở hộp thứ hai có cùng màu là:
P(B | A) \[ = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{2}.\frac{3}{7}}}{{\frac{{10}}{{21}}}} = 0,45\].
Lời giải
a) Đ |
b) S |
c) S |
d) Đ |
a) Quan sát sơ đồ hình cây, ta thấy xác suất của biến cố B với điều kiện A không xảy ra là 0,6.
b) Quan sát sơ đồ hình cây, ta thấy xác suất cả hai biến cố A và B đều không xảy ra là 0,4.
c) Ta có: P(B) = P(A).P(B | A) + P(\[\overline A \]).P(B | \[\overline A \]) = 0,1.0,3 + 0,9.0,6 = 0,57.
d) Ta có: P(A | B) = \[\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,1.0,3}}{{0,57}} = \frac{1}{{19}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.