Giải SBT Toán 12 Chân trời sáng tạo Bài 1. Xác suất có điều kiện có đáp án
30 người thi tuần này 4.6 306 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Gọi A là biến cố “Tấm thẻ được chọn có màu đỏ”, B là biến cố “Tấm thẻ được chọn ghi số chẵn”. Ta cần tính P(A | B).
Cách 1:
Do từ 1 đến 15 có 7 số chẵn nên có 7 tấm thẻ được ghi số chẵn.
Trong 7 tấm thẻ được ghi số chẵn, có 5 thẻ có số không lớn hơn 10 nên được sơn màu đỏ. Do đó, trong tổng số 7 tấm thẻ được ghi số chẵn có 5 tấm thẻ màu đỏ.
Vậy xác suất để thẻ được chọn có màu đỏ, biết rằng nó được ghi số chẵn là
P(A | B) = \(\frac{5}{7}\)≈ 0,71.
Cách 2:
Do có 7 tấm thẻ được ghi số chẵn trong tổng số 15 tấm thẻ nên P(B) = \(\frac{7}{{15}}\).
Do có 5 tấm thẻ có màu đỏ được ghi số chẵn trong tổng số 15 thẻ nên P(AB) = \(\frac{5}{{15}}.\)
Vậy P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{5}{{15}}:\frac{7}{{15}} = \frac{5}{7}\) ≈ 0,71.
b) Hộp chứa 5 tấm thẻ màu xanh, trong đó có 2 tấm thẻ ghi số chẵn.
Vậy P(B | \(\overline A \)) = \(\frac{2}{5}\) = 0,4.
Lời giải
Gọi A là biến cố “Học sinh được chọn là nữ”, B là biến cố “Học sinh được chọn bị cận thị”. Ta cần tính P(B | A).
Do có 40% học sinh là nam nên P(A) = 1 – 0,4 = 0,6.
Do có 20% học sinh nữ bị cận thị trong tổng số học sinh của lớp nên P(AB) = 0,2.
Vậy P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,2}}{{0,6}} = \frac{1}{3}\) ≈ 0,33.
Lời giải
Theo công thức nhân xác suất, ta có:
P(AB) = P(B)P(A | B) = 0,3.0,6 = 0,18.
Theo công thức tính xác suất có điều kiện, ta có:
P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,18}}{{0,7}}\) ≈ 0,26.
Lời giải
Theo quy tắc cộng xác suất, ta có P(A∪B) = P(A) + P(B) – P(AB).
Do đó, P(AB) = P(A) + P(B) – P(A∪B) = 0,4 + 0,8 – 0,9 = 0,3.
Theo công thức tính xác suất có điều kiện, ta có:
P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}}\) = 0,375.
Vì \(A\overline B \) và AB là hai biến cố xung khắc và \(A\overline B \)∪ AB = A nên theo tính chất của xác suất, ta có P(\(A\overline B \)) = P(A) – P(AB) = 0,4 – 0,3 = 0,1.
Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,8 = 0,2.
Theo công thức tính xác suất có điều kiện, ta có: P(A | \(\overline B \)) = \(\frac{{P\left( {\overline A |B} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,1}}{{0,2}} = 0,5.\)
Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,375 = 0,625.
P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,5 = 0,5.
Lời giải
Vì \(\overline A B\) và AB là hai biến cố xung khắc và \(\overline A B\) ∪ AB = B nên theo tính chất của xác suất, ta có P(B) = P(\(\overline A B\)) + P(AB) = 0,2 + 0,3 = 0,5.
Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,5 = 0,5.
Theo công thức tinh xác suất có điều kiện, ta có:
P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,5}} = 0,6\); P(A | \(\overline B \)) = \(\frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4}}{{0,5}} = 0,8\).
Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,6 = 0,4.
P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,8 = 0,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
61 Đánh giá
50%
40%
0%
0%
0%