Giải SGK Toán 12 CTST Bài 1. Vẽ đồ thị hàm số bằng phần mềm GeoGebra có đáp án
23 người thi tuần này 4.6 303 lượt thi 12 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
Danh sách câu hỏi:
Lời giải
a) y = x3
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

- Nhập hàm số y = x3 vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ

- Nhận xét:
Hàm số đồng biến trên khoảng (0; +∞) và nghịch biến trên khoảng (−∞; 0).
Hàm số đã cho không có cực trị.
Đồ thị có tâm đối xứng là (0; 0).
Lời giải
b) y = x3 – 3x
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

- Nhập hàm số y = x3 – 3x vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ

Nhận xét:
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng (−1; 1).
Điểm cực đại là (−1; 2), điểm cực tiểu là (1; −2).
Đồ thị hàm số có tâm đối xứng là (0; 0).
Lời giải
c) y = −x3 + 3x
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụvà vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

- Nhập hàm số y = −x3 + 3x vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ

Nhận xét:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đồng biến trên khoảng (−1; 1).
Điểm cực đại là (1; 2), điểm cực tiểu là (−1; −2).
Đồ thị hàm số có tâm đối xứng là (0; 0).
Lời giải
d) y = x3 – 3x + 2

- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

- Nhập hàm số y = x3 – 3x + 2 vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ

Nhận xét:
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng (−1; 1).
Điểm cực đại là (−1; 4), điểm cực tiểu là (1; 0).
Đồ thị hàm số có tâm đối xứng là (0; 2).
Lời giải
- Tạo các thanh trượt biểu thị các tham số a, b, c, d
- Nhập hàm số vào ô lệnh.
- Nhập phương trình hai đường tiệm cận x = 1; y = 1.
- Ta được đồ thị như hình vẽ
Nhận xét
Hàm số nghịch biến trên khoảng (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Đồ thị hàm số nhận x = 1 là tiệm cận đứng và y = 1 là tiệm cận ngang.
Tâm đối xứng của đồ thị hàm số là (1; 1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.