Giải SBT Toán 12 Chân trời sáng tạo Bài 3. Đường tiệm cận của đồ thị hàm số có đáp án
36 người thi tuần này 4.6 248 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = −1.
b) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = 1 và tiệm cận đứng x = 2.
c) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận đứng x = 1 và tiệm cận xiên là đường thẳng y = ax + b đi qua hai điểm (0; 2) và (2; 0).
Giải hệ phương trình \(\left\{ \begin{array}{l}0.a + b = 2\\2a + b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 2\\a = - 1\end{array} \right.\).
Vậy đường tiệm cận xiên của đồ thị hàm số là y = −x + 2.
d) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có hai đường tiệm cận xiên.
Đường tiệm cận xiên thứ nhất y = a1x + b1 đi qua hai điểm có tọa độ (0; −3) và (4; 0).
Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_1}.0 + {b_1} = - 3\\{a_1}.4 + {b_1} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = \frac{3}{4}\\{b_1} = - 3\end{array} \right.\\\end{array}\).
Do đó, đường tiệm cận xiên thứ nhất là y = \(\frac{3}{4}x - 3.\)
Đường tiệm cận xiên thứ hai y = a2x + b2 đi qua hai điểm có tọa độ (0; 3) và (4; 0).
Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_2}.0 + {b_2} = 3\\{a_2}.4 + {b_2} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = - \frac{3}{4}\\{b_1} = 3\end{array} \right.\\\end{array}\).
Do đó, đường tiệm cận xiên thứ hai là: y = \( - \frac{3}{4}x + 3.\)
Lời giải
a) Ta có: \(\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} y = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} \frac{{x - 5}}{{2x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} y = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} \frac{{x - 5}}{{2x + 1}} = + \infty \).
Do đó, đường thẳng x = \( - \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 5}}{{2x + 1}} = \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 5}}{{2x + 1}} = \frac{1}{2}\).
Do đó, đường thẳng y = \(\frac{1}{2}\) là tiệm ngang của đồ thị hàm số.
b) Ta có: \(\mathop {\lim }\limits_{x \to {3^ + }} y = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2x}}{{x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {3^ - }} y = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x}}{{x - 3}} = - \infty \).
Do đó, đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x}}{{x - 3}} = 2\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x}}{{x - 3}} = 2\).
Do đó, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
c) Ta có: \(\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} y = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} \left( { - \frac{6}{{3x + 2}}} \right) = - \infty \); \(\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} y = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} \left( { - \frac{6}{{3x + 2}}} \right) = + \infty \).
Do đó, đường thẳng x = \( - \frac{2}{3}\) là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{6}{{3x + 2}}} \right) = 0\); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{6}{{3x + 2}}} \right) = 0\).
Do đó, đường thẳng y = 0 là đường tiệm cận ngang của đồ thị hàm số.
Lời giải
a) \(y = 2x + 1 + \frac{1}{{x - 3}}\)
Ta có: \(\mathop {\lim }\limits_{x \to {3^ + }} y = \mathop {\lim }\limits_{x \to {3^ + }} \left( {2x + 1 + \frac{1}{{x - 3}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {3^ - }} y = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2x + 1 + \frac{1}{{x - 3}}} \right) = - \infty \).
Do đó, đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{x - 3}} = 0\).
Do đó, đường thẳng y = 2x + 1laf tiệm cận xiên của đồ thị hàm số.
b) Ta có: \(y = \frac{{ - 3{x^2} + 16x - 3}}{{x - 5}}\) = −3x + 1 + \(\frac{2}{{x - 5}}\).
\(\mathop {\lim }\limits_{x \to {5^ + }} y = \mathop {\lim }\limits_{x \to {5^ + }} \left( { - 3x + 1 + \frac{2}{{x - 5}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {5^ - }} y = \mathop {\lim }\limits_{x \to {5^ - }} \left( { - 3x + 1 + \frac{2}{{x - 5}}} \right) = - \infty \).
Do đó, đường thẳng x = 5 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( { - 3x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{2}{{x - 5}} = 0\).
Do đó, đường thẳng y = −3x + 1 là tiệm cận xiên của đồ thị hàm số.
c) Ta có: \(y = \frac{{ - 6{x^2} + 7x + 1}}{{3x + 1}}\) = −2x + 3 – \(\frac{2}{{3x + 1}}\)
\(\mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ + }} y = \mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ + }} \left( { - 2x + 3 - \frac{2}{{3x + 1}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ - }} y = \mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ - }} \left( { - 2x + 3 - \frac{2}{{3x + 1}}} \right) = - \infty \).
Do đó, đường thẳng x = \( - \frac{1}{3}\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( { - 2x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 2}}{{3x + 1}} = 0\).
Do đó, đường thẳng y = −2x + 3 là tiệm cận xiên của đồ thị hàm số.
Lời giải
a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = - \infty \).
Do đó, đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - {3^ + }} y = \mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} y = \mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = + \infty \).
Do đó, đường thẳng x = −3 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = 1\).
Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
b) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {{x^2} - 16} + x} \right] = 0\).
Do đó, đường thẳng y = −x là đường tiệm cận xiên của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\sqrt {{x^2} - 16} - x} \right] = 0\).
Do đó, đường thẳng y = x là đường tiệm cận xiên của đồ thị hàm số.
Lời giải
a) Ta có: C(95) = \(\frac{{2000.95}}{{100 - 95}} = 38000\) tỉ đồng.
C(96) = \(\frac{{2000.96}}{{100 - 96}} = 48000\) tỉ đồng.
C(97) = \(\frac{{2000.97}}{{100 - 97}} = \frac{{194000}}{3}\) tỉ đồng.
C(98) = \(\frac{{2000.98}}{{100 - 98}} = 96000\)tỉ đồng.
C(99) = \(\frac{{2000.99}}{{100 - 99}} = 198000\) tỉ đồng.
b) Ta có: C(p) = \(\frac{{2000p}}{{100 - p}}\)
\(\mathop {\lim }\limits_{p \to {{100}^ + }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ + }} \frac{{2000p}}{{100 - p}} = + \infty \); \(\mathop {\lim }\limits_{p \to {{100}^ - }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ - }} \frac{{2000p}}{{100 - p}} = - \infty \).
Do đó, đồ thị hàm số có đường tiệm cận đứng p = 100.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
