Giải SBT Toán 12 Chân trời sáng tạo Bài 4. Khảo sát và vẽ đồ thị một số hàm số cơ bản có đáp án
20 người thi tuần này 4.6 150 lượt thi 11 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) y = x(x2 – 4x) = x3 – 4x2
Tập xác định: D = ℝ.
Ta có: y' = 3x2 – 8x
y' = 0 ⇔ x = 0 hoặc x = \(\frac{8}{3}\).
Ta có bảng biến thiên:

Hàm số đồng biến trên các khoảng (−∞; 0) và \(\left( {\frac{8}{3}; + \infty } \right)\).
Hàm số nghịch biến trên khoảng \(\left( {0;\frac{8}{3}} \right)\).
Hàm số đạt cực đại tại x = 0, yCĐ = 0.
Hàm số đạt cực tiểu tại x = \(\frac{8}{3}\), yCT = \( - \frac{{256}}{{27}}\).
Đồ thị hàm số:

b) y = −x3 + 3x2 – 2
Tập xác định: D = ℝ.
Ta có: y' = −3x2 + 6x
y' = 0 ⇔ x = 0 hoặc x = 2.
Ta có bảng biến thiên:

Hàm số đồng biến trên khoảng (0; 2).
Hàm số nghịch biến trên các khoảng (−∞; 0) và (2; +∞).
Hàm số đạt cực đại tại x = 2, yCĐ = 2.
Hàm số đạt cực tiểu tại x = 0, yCT = −2.
Đồ thị hàm số:

Lời giải
a) Khi m = −1 ta được: y = −2x3 – x – 2.
Tập xác định: D = ℝ.
Ta có: y' = −6x2 – 1
y' = 0 phương trình vô nghiệm.
Ta có bảng biến thiên:

Hàm số nghịch biến trên ℝ.
Hàm số không cực trị.
Đồ thị hàm số

b) Ta có: y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1
y' = 3(m – 1)x2 + 4(m + 1)x – 1
y'' = 6(m – 1)x + 4(m + 1).
y'' = 0 ⇔ \(\left\{ \begin{array}{l}m - 1 \ne 0\\x = \frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}}\end{array} \right.\).
Để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
⇔ \(\left\{ \begin{array}{l}m - 1 \ne 0\\\frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}} = - 2\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}m \ne 1\\2m + 2 = 6m - 6\end{array} \right.\) ⇔ m = 2.
Lời giải
Ta có: y = 2x3 + 6x2 – x + 2
y' = 6x2 + 12x – 1
y'' = 12x + 12
y'' = 0 ⇔ x = −1.
Tâm đối xứng I của đồ thị hàm số có tọa độ I(−1; 7).
Với y'(−1) = −7, ta có phương trình tiếp tuyến tại I:
y = −7(x + 1) + 7 hay y = −7x.
Lời giải
Ta có: y = −x3 – 3x2 + mx + 1
y' = −3x2 – 6x + m
y'' = −6x – 6;
y'' = 0 ⇔ x = −1.
Tâm đối xứng I của đồ thị hàm số có tung độ yI = −m – 1.
I nằm trên trục Ox nên yI = 0 ⇔ = −m – 1 = 0 ⇔ m = −1.
Khi m = −1, hàm số trở thành y = −x3 – 3x2 − x + 1 và y' = −3x2 – 6x – 1.
Phương trình y' = 0 có ∆ . 0 nên có hai nghiệm phân biệt, suy ra đồ thị hàm số có hai cực trị đối xứng qua I(−1; 0), nghĩa là tung độ của hai cực trị trái dấu nhau nên đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt.
Lời giải
a) y = 3 + \(\frac{1}{x}\)
Tập xác định: D = ℝ\{0}.
Giới hạn của hàm số:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {3 + \frac{1}{x}} \right) = 3\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {3 + \frac{1}{x}} \right) = 3\).
Do đó, đồ thị hàm số có tiệm cận ngang y = 3.
\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {3 + \frac{1}{x}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \left( {3 + \frac{1}{x}} \right) = - \infty \).
Do đó, đồ thị hàm số có tiệm cận đứng x = 0.
Ta có: y' = \( - \frac{1}{{{x^2}}}\)
y' < 0 với mọi x ≠ 0 nên hàm số nghịch biến trên các khoảng (−∞; 0) và (0; +∞).
Ta có bảng biến thiên:

Đồ thị hàm số:

b) y = 2 – \(\frac{1}{{1 + x}}\)
Tập xác định: D = ℝ\{−1}.
Giới hạn của hàm số:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {2 - \frac{1}{{1 + x}}} \right) = 2\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {2 - \frac{1}{{1 + x}}} \right) = 2\).
Do đó, đồ thị hàm số có tiệm cận ngang y = 2.
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {2 - \frac{1}{{1 + x}}} \right) = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {2 - \frac{1}{{1 + x}}} \right) = + \infty \).
Do đó, đồ thị hàm số có tiệm cận đứng x = −1.
Ta có bảng biến thiên:

Ta có: y' = \(\frac{1}{{{{\left( {1 + x} \right)}^2}}}\) > 0 với mọi x ≠ −1 nên hàm số đồng biến trên khoảng (−∞; −1) và (−1; +∞).
Đồ thị hàm số:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.