Giải SGK Toán 12 CTST Bài 2. Tích phân có đáp án
66 người thi tuần này 4.6 799 lượt thi 20 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Xe dừng khi v(t) = 20 – 5t = 0 Û t = 4.
Quãng đường xe di chuyển từ khi bắt đầu hãm phanh đến khi dừng là:
(m).
Lời giải
a)

Gọi A(1; 0), B(3; 0), C, D lần lượt là giao điểm của đường thẳng x = 3; x = 1 với đường thẳng y = x + 1.
Khi đó C(3; 4), D(1; 2).
Ta có S(3) là diện tích của hình thang vuông ABCD với đáy bé AD = 2; đáy lớn BC = 4 và đường cao AB = 2.
Do đó \(S\left( 3 \right) = {S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2 + 4} \right).2}}{2} = 6\).
b)

Tương tự như câu a, ta có A(1; 0), B(x; 0), C(x; x + 1), D(1; 2).
Ta có S(x) là diện tích hình thang ABCD với đáy bé AD = 2, đáy lớn BC = x + 1 và đường cao AB = x – 1.
Do đó \(S\left( x \right) = {S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {x + 3} \right)\left( {x - 1} \right)}}{2} = \frac{{{x^2} + 2x - 3}}{2}\), x ≥ 1.
c) Có \(S'\left( x \right) = {\left( {\frac{{{x^2} + 2x - 3}}{2}} \right)^\prime } = \frac{{2x + 2}}{2} = x + 1 = f\left( x \right)\).
Do đó S(x) là một nguyên hàm của f(x) trên [1; +∞).
d) Vì F(x) là nguyên hàm của hàm số f(x) nên
\(F\left( x \right) = \int {\left( {x + 1} \right)dx = \frac{{{x^2}}}{2} + x + C} \).
Do đó \(F\left( 3 \right) = \frac{{{3^2}}}{2} + 3 + C = \frac{{15}}{2} + C\); \(F\left( 1 \right) = \frac{{{1^2}}}{2} + 1 + C = \frac{3}{2} + C\).
Suy ra \(F\left( 3 \right) - F\left( 1 \right) = \frac{{15}}{2} + C - \left( {\frac{3}{2} + C} \right) = 6 = S\left( 3 \right)\).
Để tính S(3), ta cần tìm nguyên hàm F(x) của f(x) và tính S(3) = F(3) – F(1).
Lời giải
Ta có hàm số y = ex liên tục, dương trên đoạn [0; 1] .
Ta có . Suy ra một nguyên hàm của hàm số y = ex là F(x) = ex.
Do đó diện tích hình thang cong cần tính là:
S = F(1) – F(0) = e – 1.
Lời giải
Ta có .
Giả sử F(x) = x2 – x; G(x) = x2 – x + 1 là hai nguyên hàm của f(x).
Ta có F(3) – F(0) = 6; G(3) – G(0) = 7 – 1 = 6.
Do đó F(3) – F(0) = G(3) – G(0).
Lời giải
a) \(\int\limits_1^3 {2xdx} = \left. {{x^2}} \right|_1^3 = 9 - 1 = 8\).
b) \(\int\limits_0^\pi {\sin tdt} = \left. { - {\mathop{\rm cost}\nolimits} } \right|_0^\pi = 1 + 1 = 2\).
c) \(\int\limits_0^{\ln 2} {{e^u}du} \)\( = \left. {{e^u}} \right|_0^{\ln 2}\)\( = {e^{\ln 2}} - {e^0} = 2 - 1 = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




