Câu hỏi trong đề: Giải SGK Toán 12 CTST Bài 2. Tích phân có đáp án !!
Quảng cáo
Trả lời:
a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} \)\( = \int\limits_{ - 2}^{ - 1} {\left| {2x + 2} \right|dx} + \int\limits_{ - 1}^1 {\left| {2x + 2} \right|dx} \)\( = - 2\int\limits_{ - 2}^{ - 1} {\left( {x + 1} \right)dx} + 2\int\limits_{ - 1}^1 {\left( {x + 1} \right)dx} \)
\( = \left. { - \left( {{x^2} + 2x} \right)} \right|_{ - 2}^{ - 1} + \left. {\left( {{x^2} + 2x} \right)} \right|_{ - 1}^1\)\( = 1 + 3 + 1 = 5\).
b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} \)\( = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^4 {\left| {{x^2} - 4} \right|dx} \)\( = \int\limits_0^2 {\left( {4 - {x^2}} \right)dx} + \int\limits_2^4 {\left( {{x^2} - 4} \right)dx} \)
\( = \left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^4\)\( = \frac{{16}}{3} + \frac{{16}}{3} + \frac{{16}}{3} = 16\).
c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)\( = \int\limits_{ - \frac{\pi }{2}}^0 {\left| {\sin x} \right|dx} + \int\limits_0^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)\( = - \int\limits_{ - \frac{\pi }{2}}^0 {\sin xdx} + \int\limits_0^{\frac{\pi }{2}} {\sin xdx} \)
\( = \left. {\cos x} \right|_{ - \frac{\pi }{2}}^0 - \left. {\cos x} \right|_0^{\frac{\pi }{2}}\)\( = 1 + 1 = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Xe dừng khi v(t) = 20 – 5t = 0 Û t = 4.
Quãng đường xe di chuyển từ khi bắt đầu hãm phanh đến khi dừng là:
(m).
Lời giải
Lợi nhuận nhà máy thu được khi bán x sản phẩm trong tuần là:
\(P\left( x \right) = \int {\left( {16 - 0,02x} \right)dx} \) \( = 16x - 0,01{x^2} + C\)
Vì P(0) = −25 nên 16.0 – 0,01.02 + C = −25 Þ C = −25.
Do đó P(x) = −0,01x2 + 16x – 25.
Lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm trong tuần là:
P(90) = −0,01.902 + 16.90 – 25 = 1334 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


