Câu hỏi:

13/07/2024 9,013 Lưu

Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số y = f(x) = ex, trục hoành, trục tung và đường thẳng x = 1 (Hình 4).

Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số y = f(x) = e^x, trục hoành, trục tung và đường thẳng x = 1 (Hình 4).   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có hàm số y = ex liên tục, dương trên đoạn [0; 1] .

Ta có exdx=ex+C. Suy ra một nguyên hàm của hàm số y = ex là F(x) = ex.

Do đó diện tích hình thang cong cần tính là:

S = F(1) – F(0) = e – 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Xe dừng khi v(t) = 20 – 5t = 0 Û t = 4.

Quãng đường xe di chuyển từ khi bắt đầu hãm phanh đến khi dừng là:

s=04vtdt=04205tdt=20t5t2204=40 (m).

Lời giải

Quãng đường chuyển động của thang máy là:

\(s = \int\limits_0^{24} {v\left( t \right)dt} \)\( = \int\limits_0^2 {tdt} + 2\int\limits_2^{20} {dt} + \int\limits_{20}^{24} {\left( {12 - 0,5t} \right)dt} \)

\( = \left. {\frac{{{t^2}}}{2}} \right|_0^2 + \left. {\left( {2t} \right)} \right|_2^{20} + \left. {\left( {12t - \frac{1}{4}{t^2}} \right)} \right|_{20}^{24}\)

\( = 2 + 40 - 4 + 144 - 140\) = 42 m.

Tốc độ trung bình của thang máy là:\({v_{tb}} = \frac{s}{{24}} = \frac{{42}}{{24}} = 1,75\)(m/s).