Giải SGK Toán 12 CTST Bài 3. Ứng dụng hình học của tích phân có đáp án
28 người thi tuần này 4.6 859 lượt thi 21 câu hỏi
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Sau khi học xong bài, ta giải quyết bài toán này như sau:

Khối cầu có bán kính R là khối tròn xoay nhận được khi quay nửa hình tròn giới hạn bởi đồ thị hàm số \(y = \sqrt {{R^2} - {x^2}} \left( { - R \le x \le R} \right)\) và trục Ox quanh trục Ox.
Từ đó thể tích khối cầu là:
\(V = \pi \int\limits_{ - R}^R {\left( {{R^2} - {x^2}} \right)dx} = \left. {\pi \left( {{R^2}x - \frac{{{x^3}}}{3}} \right)} \right|_{ - R}^R = \frac{{4\pi {R^3}}}{3}\).
Lời giải

a) Gọi A(3; 0), B(0; 6), C(5; 0), E(5; −4).
Ta có S1 chính là diện tích của tam giác vuông OAB với OA = 3, OB = 6.
Do đó \({S_1} = {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.3.6 = 9\).
Ta có \(\int\limits_0^3 {f\left( x \right)dx} \)\( = \int\limits_0^3 {\left( {6 - 2x} \right)dx} \)\[ = \left. {\left( {6x - {x^2}} \right)} \right|_0^3\] = 9.
Vậy \({S_1} = \int\limits_0^3 {f\left( x \right)dx} \).
b) Ta có S2 chính là diện tích của tam giác vuông ACE với AC = 2, CE = 4.
Do đó \({S_2} = {S_{\Delta ACE}} = \frac{1}{2}AC.CE = \frac{1}{2}.2.4 = 4\).
Ta có \(\int\limits_3^5 {f\left( x \right)dx} \)\( = \int\limits_3^5 {\left( {6 - 2x} \right)dx} \)\[ = \left. {\left( {6x - {x^2}} \right)} \right|_3^5\] = 5 – 9 = −4.
Do đó \({S_2} = - \int\limits_3^5 {f\left( x \right)dx} \).
c) Ta có \(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} \)= \(\int\limits_0^5 {\left| {6 - 2x} \right|dx} \)\( = \int\limits_0^3 {\left| {6 - 2x} \right|dx} + \int\limits_3^5 {\left| {6 - 2x} \right|dx} \)
\( = \int\limits_0^3 {\left( {6 - 2x} \right)dx} + \int\limits_3^5 {\left( {2x - 6} \right)dx} \)\( = \left. {\left. {\left( {6x - {x^2}} \right)} \right|_0^3 + \left( {{x^2} - 6x} \right)} \right|_3^5\)
= 9 − 5 + 9 = 13.
Có S1 + S2 = 9 + 4 = 13 = \(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} \).
Lời giải
Ta có 2x – x2 = 0 Û x = 0 hoặc x = 2.
Với x Î [0; 2] thì 2x – x2 ≥ 0, với x Î [2; 3] thì 2x – x2 ≤ 0.
Diện tích cần tính là:
\(S = \int\limits_0^3 {\left| {2x - {x^2}} \right|dx} \)\( = \int\limits_0^2 {\left| {2x - {x^2}} \right|dx} + \int\limits_2^3 {\left| {2x - {x^2}} \right|dx} \)\( = \int\limits_0^2 {\left( {2x - {x^2}} \right)dx} + \int\limits_2^3 {\left( {{x^2} - 2x} \right)dx} \)
\( = \left. {\left( {{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - {x^2}} \right)} \right|_2^3\)\( = \frac{4}{3} + \frac{4}{3} = \frac{8}{3}\).
Lời giải
Với x Î [0; π] thì −1 ≤ cosx ≤ 1 nên −3 ≤ cosx − 2 ≤ −1 Þ cosx − 2 < 0.
Diện tích cần tính là:
\(S = \int\limits_0^\pi {\left| {\cos x - 2} \right|} dx\)\( = \int\limits_0^\pi {\left( {2 - \cos x} \right)} dx\)\( = \left. {\left( {2x - \sin x} \right)} \right|_0^\pi \)= 2π.
Lời giải

a) Ta có \({S_1} = \int\limits_0^2 {\left| {4x - {x^2}} \right|dx} \)\( = \int\limits_0^2 {\left( {4x - {x^2}} \right)dx} \)\( = \left. {\left( {2{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^2\)\( = \frac{{16}}{3}\).
b) Gọi A(2; 0), B(2; 2).
Ta có tam giác OAB là tam giác vuông tại A, có OA = 2, AB = 2.
Suy ra \({S_{\Delta OAB}} = \frac{1}{2}.OA.AB = \frac{1}{2}.2.2 = 2\).
Do đó \(S = {S_1} - {S_{\Delta OAB}} = \frac{{16}}{3} - 2 = \frac{{10}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.