Câu hỏi:

13/07/2024 21,850

Một bình chứa nước có hình dạng như Hình 11. Biết rằng khi nước trong bình có chiều cao x (dm) (0 ≤ x ≤ 4) thì mặt nước là hình vuông có cạnh 2+x24 (dm). Tính dung tích của bình.

Một bình chứa nước có hình dạng như Hình 11. Biết rằng khi nước trong bình có chiều cao x (dm) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một bình chứa nước có hình dạng như Hình 11. Biết rằng khi nước trong bình có chiều cao x (dm) (ảnh 2)

Chọn trục Ox như hình vẽ, hai đáy của bình nằm trong mặt phẳng vuông góc với trục Ox tại x = 0 và x = h.

Mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ 4) cắt bình theo mặt cắt là hình vuông và có diện tích là \(S\left( x \right) = 2 + \frac{{{x^2}}}{4}\) (dm2).

Do đó dung tích của bình là \(V = \int\limits_0^4 {\left( {2 + \frac{{{x^2}}}{4}} \right)dx} \)\( = \left. {\left( {2x + \frac{{{x^3}}}{{12}}} \right)} \right|_0^4 = \frac{{40}}{3}\) (dm3).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì mặt cắt là tam giác vuông có một góc 45° nên mặt cắt là tam giác vuông cân.

Do đó diện tích của mặt cắt là \(S\left( x \right) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\).

Thể tích vật thể là:

\(V = \int\limits_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)dx} \)\( = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2\)\( = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\).

Lời giải

Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.   (ảnh 2)

Chon hệ tọa độ Oxy như hình vẽ.

Giả sử (P): y = ax2 + bx + c (a ≠ 0).

Vì (P) đi qua các điểm (0; 0), (6; 0), (3; 6) nên ta có:

\(\left\{ \begin{array}{l}c = 0\\36a + 6b = 0\\9a + 3b = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{2}{3}\\b = 4\\c = 0\end{array} \right.\).

Vậy (P): \(y = - \frac{2}{3}{x^2} + 4x\).

Bài toán trở thành tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = - \frac{2}{3}{x^2} + 4x\), trục hoành và hai đường thẳng x = 0, x = 6.

Diện tích cần tính là:

\(S = \int\limits_0^6 {\left| { - \frac{2}{3}{x^2} + 4x} \right|} dx\)\( = \int\limits_0^6 {\left( { - \frac{2}{3}{x^2} + 4x} \right)} dx\)\( = \left. {\left( { - \frac{{2{x^3}}}{9} + 2{x^2}} \right)} \right|_0^6 = 24\) m2.

Vậy diện tích của cửa hầm là 24 m2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP