Giải SBT Toán 12 Chân trời sáng tạo Bài 3. Ứng dụng hình học của tích phân có đáp án
29 người thi tuần này 4.6 359 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Diện tích hình phẳng cần tìm là: \[S = \int\limits_{ - 1}^1 {\left| {3x\left( {2 - x} \right)} \right|dx} = \int\limits_{ - 1}^1 {\left| {6x - 3{x^2}} \right|dx} \].
Ta có: 3x(2 – x) = 0 khi x = 2 hoặc x = 0.
Phương trình chỉ có nghiệm x = 0 thuộc đoạn [−1; 1].
Do đó, \[S = \int\limits_{ - 1}^1 {\left| {6x - 3{x^2}} \right|dx} \]
\[ = \left| {\int\limits_{ - 1}^0 {\left( {6x - 3{x^2}} \right)dx} } \right| + \left| {\int\limits_{ - 1}^0 {\left( {6x - 3{x^2}} \right)dx} } \right|\]
\[ = \left| {\left. {\left( {3{x^2} - {x^3}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {3{x^2} - {x^3}} \right)} \right|_0^1} \right|\]
= 4 + 2 = 6.
b) Ta có \[y = \frac{{4 - x}}{x}\] > 0 với mọi x ∈ [1; 2].
Do đó diện tích hình phẳng cần tìm là:
\[S = \int\limits_1^2 {\left| {\frac{{4 - x}}{x}} \right|} dx = \int\limits_1^2 {\left( {\frac{{4 - x}}{x}} \right)} dx\]
\[ = \int\limits_1^2 {\left( {\frac{4}{x} - 1} \right)dx = \left. {\left( {4\ln \left| x \right| - x} \right)} \right|_1^2} \]
= 4ln2 – 1.
c) Ta có: x3 – x2 = 0 ⇔ x2(x – 1) = 0 ⇔ x = 0 hoặc x = 1.
Với x ∈ [0; 1] thì y ≤ 0; với x ∈ [1; 2] thì y ≥ 0.
Do đó, diện tích hình phẳng cần tìm là:
\[S = \int\limits_0^2 {\left| {{x^3} - {x^2}} \right|dx} \]
\[ = \int\limits_0^1 {\left( {{x^2} - {x^3}} \right)dx} + \int\limits_1^2 {\left( {{x^3} - {x^2}} \right)dx} \]
\[ = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^4}}}{4}} \right)} \right|_0^1 + \left. {\left( { - \frac{{{x^3}}}{3} + \frac{{{x^4}}}{4}} \right)} \right|_1^2\]
\[ = \frac{1}{{12}} + \frac{{17}}{{12}} = \frac{3}{2}.\]
Lời giải
a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = cosx, trục hoành và đường thẳng x = 1 và x = −1.
Diện tích hình phẳng cần tìm là:
\[S = \int\limits_0^{\frac{{3\pi }}{2}} {\left| {\cos x} \right|dx} \]
\[ = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} + \int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( { - \cos x} \right)dx} \]
\[ = \left. {\left( {\sin {\rm{x}}} \right)} \right|_0^{\frac{\pi }{2}} - \left. {\left( {\sin {\rm{x}}} \right)} \right|_{_{\frac{\pi }{2}}}^{^{\frac{{3\pi }}{2}}} = 3.\]
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2x, đường thẳng y = 4 với hai đường thẳng x = 0 và x = 2.
Diện tích hình phẳng cần tìm là:
\[S = \int\limits_0^2 {\left| {4 - {2^x}} \right|} dx = \int\limits_0^2 {\left( {4 - {2^x}} \right)dx} \]
\[ = \left. {\left( {4x - \frac{{{2^x}}}{{\ln 2}}} \right)} \right|_0^2 = 8 - \frac{3}{{\ln 2}}.\]
Lời giải
a) Diện tích hình phẳng cần tìm là:
\[S = \int\limits_{ - 1}^2 {\left| {\left( {{x^2} + 2x + 1} \right) - \left( {1 - 2x} \right)} \right|} dx\]
\[ = \int\limits_{ - 1}^2 {\left| {{x^3} + 4x} \right|} dx\].
Ta có: x2 + 4x = 0 ⇔ x = 0 hoặc x = −4. Phương trình chỉ có một nghiệm x = 0 thuộc [−1; 2].
Do đó, \[S = \int\limits_{ - 1}^2 {\left| {{x^2} + 4x} \right|dx} \]
\[ = \int\limits_{ - 1}^0 {\left| {{x^2} + 4x} \right|dx + \int\limits_0^2 {\left| {{x^2} + 4x} \right|dx} } \]
\[ = \left| {\int\limits_{ - 1}^0 {\left( {{x^2} + 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^2} + 4x} \right)dx} } \right|\]
\[ = \left| {\left. {\left( {\frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {\frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_0^2} \right|\]
\[ = \frac{5}{3} + \frac{{32}}{3} = \frac{{37}}{3}.\]
b) Diện tích hình phẳng cần tìm là:
\[S = \int\limits_1^4 {\left| {x - 4{x^3} - 2x} \right|dx = \int\limits_1^4 {\left| { - 4{x^3} - x} \right|dx} } \]
\[ = \int\limits_1^4 {\left| { - \left( {4{x^3} + x} \right)} \right|dx} = \int\limits_1^4 {\left| {4{x^3} + x} \right|dx} \]
Do 4x3 + x > 0 với mọi x ∈ [1; 4]. Do đó,
\[S = \int\limits_1^4 {\left| {4{x^3} + x} \right|dx} \]
= \[\int\limits_1^4 {\left( {4{x^3} + x} \right)dx} \]
\[ = \left. {\left( {{x^4} + \frac{{{x^2}}}{2}} \right)} \right|_1^4 = \frac{{525}}{2}.\]
Lời giải
Gọi SA, SB lần lượt là diện tích của hình phẳng A, B. Ta có:
\[{S_A} = \int\limits_0^2 {\left( {2x - {x^2}} \right)dx = } \left. {\left( {{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^2 = \frac{4}{3};\]
\[{S_B} = \int\limits_2^a {\left( {{x^2} - 2x} \right)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2}} \right)} \right|} _2^a\]
\[ = \frac{{{a^3}}}{3} - {a^2} + \frac{4}{3}.\]
Theo đề bài, ta có: SA = SB ⇔ \[\frac{{{a^3}}}{3} - {a^2} + \frac{4}{3} = \frac{4}{3}\] hay \[\frac{{{a^3}}}{3} - {a^2} = 0\] ⇔ a = 0 hoặc a = 3.
Vì a > 2 nên a = 3 là giá trị thỏa mãn.
Lời giải
Diện tích hình phẳng S(a) là:
\[S\left( a \right) = \int\limits_1^a {\frac{3}{{{x^2}}}} dx\]
\[ = 3\int\limits_1^a {\frac{1}{{{x^2}}}} dx = \left. {\frac{{ - 3}}{x}} \right|_1^a = 3\left( {1 - \frac{1}{a}} \right).\]
Ta có: \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right) = \mathop {\lim }\limits_{a \to + \infty } 3\left( {1 - \frac{1}{a}} \right) = 3.\]
Vậy \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\] = 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.