Giải SBT Toán 12 Chân trời sáng tạo Bài 3. Ứng dụng hình học của tích phân có đáp án

50 người thi tuần này 4.6 279 lượt thi 10 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) Diện tích hình phẳng cần tìm là: \[S = \int\limits_{ - 1}^1 {\left| {3x\left( {2 - x} \right)} \right|dx}  = \int\limits_{ - 1}^1 {\left| {6x - 3{x^2}} \right|dx} \].

Ta có: 3x(2 – x) = 0 khi x = 2 hoặc x = 0.

Phương trình chỉ có nghiệm x = 0 thuộc đoạn [−1; 1].

Do đó, \[S = \int\limits_{ - 1}^1 {\left| {6x - 3{x^2}} \right|dx} \]

               \[ = \left| {\int\limits_{ - 1}^0 {\left( {6x - 3{x^2}} \right)dx} } \right| + \left| {\int\limits_{ - 1}^0 {\left( {6x - 3{x^2}} \right)dx} } \right|\]

               \[ = \left| {\left. {\left( {3{x^2} - {x^3}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {3{x^2} - {x^3}} \right)} \right|_0^1} \right|\]

               = 4 + 2 = 6.

b) Ta có \[y = \frac{{4 - x}}{x}\] > 0 với mọi x ∈ [1; 2].

Do đó diện tích hình phẳng cần tìm là:

 \[S = \int\limits_1^2 {\left| {\frac{{4 - x}}{x}} \right|} dx = \int\limits_1^2 {\left( {\frac{{4 - x}}{x}} \right)} dx\]

    \[ = \int\limits_1^2 {\left( {\frac{4}{x} - 1} \right)dx = \left. {\left( {4\ln \left| x \right| - x} \right)} \right|_1^2} \]

    = 4ln2 – 1.

c) Ta có: x3 – x2 = 0 ⇔ x2(x – 1) = 0 ⇔ x = 0 hoặc x = 1.

Với x ∈ [0; 1] thì y ≤ 0; với x ∈ [1; 2] thì y ≥ 0.

Do đó, diện tích hình phẳng cần tìm là:

\[S = \int\limits_0^2 {\left| {{x^3} - {x^2}} \right|dx} \]

  \[ = \int\limits_0^1 {\left( {{x^2} - {x^3}} \right)dx}  + \int\limits_1^2 {\left( {{x^3} - {x^2}} \right)dx} \]

  \[ = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^4}}}{4}} \right)} \right|_0^1 + \left. {\left( { - \frac{{{x^3}}}{3} + \frac{{{x^4}}}{4}} \right)} \right|_1^2\]

  \[ = \frac{1}{{12}} + \frac{{17}}{{12}} = \frac{3}{2}.\]

Lời giải

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = cosx, trục hoành và đường thẳng x = 1 và x = −1.

Diện tích hình phẳng cần tìm là:

\[S = \int\limits_0^{\frac{{3\pi }}{2}} {\left| {\cos x} \right|dx} \]

  \[ = \int\limits_0^{\frac{\pi }{2}} {\cos xdx}  + \int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( { - \cos x} \right)dx} \]

  \[ = \left. {\left( {\sin {\rm{x}}} \right)} \right|_0^{\frac{\pi }{2}} - \left. {\left( {\sin {\rm{x}}} \right)} \right|_{_{\frac{\pi }{2}}}^{^{\frac{{3\pi }}{2}}} = 3.\]

b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2x, đường thẳng y = 4 với hai đường thẳng x = 0 và x = 2.

Diện tích hình phẳng cần tìm là:

\[S = \int\limits_0^2 {\left| {4 - {2^x}} \right|} dx = \int\limits_0^2 {\left( {4 - {2^x}} \right)dx} \]

  \[ = \left. {\left( {4x - \frac{{{2^x}}}{{\ln 2}}} \right)} \right|_0^2 = 8 - \frac{3}{{\ln 2}}.\]

Lời giải

a) Diện tích hình phẳng cần tìm là:

\[S = \int\limits_{ - 1}^2 {\left| {\left( {{x^2} + 2x + 1} \right) - \left( {1 - 2x} \right)} \right|} dx\]

   \[ = \int\limits_{ - 1}^2 {\left| {{x^3} + 4x} \right|} dx\].

Ta có: x2 + 4x = 0 ⇔ x = 0 hoặc x = −4. Phương trình chỉ có một nghiệm x = 0 thuộc [−1; 2].

Do đó, \[S = \int\limits_{ - 1}^2 {\left| {{x^2} + 4x} \right|dx} \]

              \[ = \int\limits_{ - 1}^0 {\left| {{x^2} + 4x} \right|dx + \int\limits_0^2 {\left| {{x^2} + 4x} \right|dx} } \]

              \[ = \left| {\int\limits_{ - 1}^0 {\left( {{x^2} + 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^2} + 4x} \right)dx} } \right|\]

              \[ = \left| {\left. {\left( {\frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {\frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_0^2} \right|\]

                     \[ = \frac{5}{3} + \frac{{32}}{3} = \frac{{37}}{3}.\]

b) Diện tích hình phẳng cần tìm là:

\[S = \int\limits_1^4 {\left| {x - 4{x^3} - 2x} \right|dx = \int\limits_1^4 {\left| { - 4{x^3} - x} \right|dx} } \]

  \[ = \int\limits_1^4 {\left| { - \left( {4{x^3} + x} \right)} \right|dx}  = \int\limits_1^4 {\left| {4{x^3} + x} \right|dx} \]

Do 4x3 + x > 0 với mọi x ∈ [1; 4]. Do đó,

\[S = \int\limits_1^4 {\left| {4{x^3} + x} \right|dx} \]

   = \[\int\limits_1^4 {\left( {4{x^3} + x} \right)dx} \]

   \[ = \left. {\left( {{x^4} + \frac{{{x^2}}}{2}} \right)} \right|_1^4 = \frac{{525}}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

56 Đánh giá

50%

40%

0%

0%

0%